Recent advances in G protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multi-dimensional signal propagation mediated by these receptors is, in part, dependent on their conformational mobility. However, the relationship between receptor function and static structures determined via crystallography or cryo-electron microscopy is not always clear. This study examines the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide-1 receptor (GLP-1R), an important clinical target. We employ variants of the peptides GLP-1 and exendin-4 to explore the interplay between helical propensity near the agonist N-terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an exendin-4 analogue, the GLP-1R and Gs protein revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.