The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.
The post-synthetic O-acetylation of the essential component of bacterial cell walls, peptidoglycan (PG), is performed by many pathogenic bacteria to help them evade the lytic action of innate immunity responses. Occurring at the C-6 hydroxyl of N-acetylmuramoyl residues, this modification to the glycan backbone of PG sterically blocks the activity of lysozymes. As such, the enzyme responsible for this modification in Gram-positive bacteria is recognized as a virulence factor. With Gram-negative bacteria, the O-acetylation of PG provides a means of control of their autolysins at the substrate level. In this review, we discuss the pathways for PG O-acetylation and de-O-acetylation and the structure and function relationship of the O-acetyltransferases and O-acetylesterases that catalyze these reactions. The current understanding of their mechanisms of action is presented and the prospects of targeting these systems for the development of novel therapeutics are explored.
Many cases of Clostridioides difficile infection (CDI) are poorly responsive to standard antibiotic treatment strategies, and often patients suffer from recurrent infections characterized by severe diarrhea. Our group previously reported the successful cure of two patients with recurrent CDI using a standardized stool-derived microbial ecosystem therapeutic (MET-1). Using an in vitro model of the distal gut to support bacterial communities, we characterized the metabolite profiles of two defined microbial ecosystems derived from healthy donor stool (DEC58, and a subset community, MET-1), as well as an ecosystem representative of a dysbiotic state (ciprofloxacin-treated DEC58). The growth and virulence determinants of two C. difficile strains were then assessed in response to components derived from the ecosystems. CD186 (ribotype 027) and CD973 (ribotype 078) growth was decreased upon treatment with DEC58 metabolites compared to ciprofloxacin-treated DEC58 metabolites. Furthermore, CD186 TcdA and TcdB secretion was increased following treatment with ciprofloxacin-treated DEC58 spent medium compared to DEC58 spent medium alone. The net metabolic output of C. difficile was also modulated in response to spent media from defined microbial ecosystems, although several metabolite levels were divergent across the two strains examined. Further investigation of these antagonistic properties will guide the development of microbiota-based therapeutics for CDI.
The O-acetylation of exopolysaccharides, including the essential bacterial cell wall polymer peptidoglycan, confers resistance to their lysis by exogenous hydrolases. Like the enzymes catalyzing the O-acetylation of exopolysaccharides in the Golgi of animals and fungi, peptidoglycan O-acetyltransferase A (OatA) is predicted to be an integral membrane protein comprised of a membrane-spanning acyltransferase-3 (AT-3) domain and an extracytoplasmic domain; for OatA, these domains are located in the N- and C-terminal regions of the enzyme, respectively. The recombinant C-terminal domain (OatAC) has been characterized as an SGNH acetyltransferase, but nothing was known about the function of the N-terminal AT-3 domain (OatAN) or its homologs associated with other acyltransferases. We report herein the experimental determination of the topology of Staphylococcus aureus OatAN, which differs markedly from that predicted in silico. We present the biochemical characterization of OatAN as part of recombinant OatA and demonstrate that acetyl-CoA serves as the substrate for OatAN. Using in situ and in vitro assays, we characterized 35 engineered OatA variants which identified a catalytic triad of Tyr-His-Glu residues. We trapped an acetyl group from acetyl-CoA on the catalytic Tyr residue that is located on an extracytoplasmic loop of OatAN. Further enzymatic characterization revealed that O-acetyl-Tyr represents the substrate for OatAC. We propose a model for OatA action involving the translocation of acetyl groups from acetyl-CoA across the cytoplasmic membrane by OatAN and their subsequent intramolecular transfer to OatAC for the O-acetylation of peptidoglycan via the concerted action of catalytic Tyr and Ser residues.
Many bacteria possess enzymes that modify the essential cell-wall polymer peptidoglycan by O-acetylation. This modification occurs in numerous Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, a common cause of human infections. O-Acetylation of peptidoglycan protects bacteria from the lytic activity of lysozyme, a mammalian innate immune enzyme, and as such is important for bacterial virulence. The O-acetylating enzyme in Gram-positive bacteria, O-acetyltransferase A (OatA), is a two-domain protein consisting of an N-terminal integral membrane domain and a C-terminal extracytoplasmic domain. Here, we present the X-ray crystal structure at 1.71 Å resolution and the biochemical characterization of the C-terminal domain of S. aureus OatA. The structure revealed that this OatA domain adopts an SGNH-hydrolase fold and possesses a canonical catalytic triad. Site-specific replacement of active-site amino acids revealed the presence of a water-coordinating aspartate residue that limits esterase activity. This residue, although conserved in staphyloccocal OatA and most other homologs, is not present in the previously characterized streptococcal OatA. These results provide insights into the mechanism of acetyl transfer in the SGNH/GDSL hydrolase family and highlight important evolutionary differences between homologous OatA enzymes. Furthermore, this study enhances our understanding of PG O-acetyltransferases, which could guide the development of novel antibacterial drugs to combat infections with multidrug-resistant bacterial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.