Pseudomonas aeruginosa is a multidrug-resistant (MDR) pathogen and a causative agent of both nosocomial and community-acquired infections. The genes ( tyrS and tyrZ) encoding both forms of P. aeruginosa tyrosyl-tRNA synthetase (TyrRS-S and TyrRS-Z) were cloned and the resulting proteins purified. TyrRS-S and TyrRS-Z were kinetically evaluated and the Km values for interaction with Tyr, ATP, and tRNATyr were 172, 204, and 1.5 μM and 29, 496, and 1.9 μM, respectively. The kcatobs values for interaction with Tyr, ATP, and tRNATyr were calculated to be 3.8, 1.0, and 0.2 s−1 and 3.1, 3.8, and 1.9 s−1, respectively. Using scintillation proximity assay (SPA) technology, a druglike 2000-compound library was screened to identify inhibitors of the enzymes. Four compounds (BCD37H06, BCD38C11, BCD49D09, and BCD54B04) were identified with inhibitory activity against TyrRS-S. BCD38C11 also inhibited TyrRS-Z. The IC50 values for BCD37H06, BCD38C11, BCD49D09, and BCD54B04 against TyrRS-S were 24, 71, 65, and 50 μM, respectively, while the IC50 value for BCD38C11 against TyrRS-Z was 241 μM. Minimum inhibitory concentrations (MICs) were determined against a panel of clinically important pathogens. All four compounds were observed to inhibit the growth of cultures of both Gram-positive and Gram-negative bacteria organisms with a bacteriostatic mode of action. When tested against human cell cultures, none of the compounds were toxic at concentrations up to 400 μg/mL. In mechanism of inhibition studies, BCD38C11 and BCD49D09 selectively inhibited TyrRS activity by competing with ATP for binding. BCD37H06 and BCD54B04 inhibited TyrRS activity by a mechanism other than substrate competition.
Bacterial infections continue to represent a major worldwide health hazard following the emergence of drug-resistant pathogenic strains. Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections with increased morbidity and mortality. The increasing antibiotic resistance in P. aeruginosa has led to an unmet need for discovery of new antibiotic candidates. Bacterial protein synthesis is an essential metabolic process and a validated target for antibiotic development; however, the precise structural mechanism in P. aeruginosa remains unknown. In this work, the interaction of P. aeruginosa initiation factor 1 (IF1) with the 30S ribosomal subunit was studied by NMR, which enabled us to construct a structure of IF1-bound 30S complex. A short α-helix in IF1 was found to be critical for IF1 ribosomal binding and function. A peptide derived from this α-helix was tested and displayed a high ability to inhibit bacterial growth. These results provide a clue for rational design of new antimicrobials.
Pseudomonas aeruginosa has a high potential for developing resistance to multiple antibiotics. The gene (glnS) encoding glutaminyl‐tRNA synthetase (GlnRS) from P. aeruginosa was cloned and the resulting protein characterized. GlnRS was kinetically evaluated and the KM and kcatobs, governing interactions with tRNA, were 1.0 μM and 0.15 s−1, respectively. The crystal structure of the α2 form of P. aeruginosa GlnRS was solved to 1.9 Å resolution. The amino acid sequence and structure of P. aeruginosa GlnRS were analyzed and compared to that of GlnRS from Escherichia coli. Amino acids that interact with ATP, glutamine, and tRNA are well conserved and structure overlays indicate that both GlnRS proteins conform to a similar three‐dimensional structure. GlnRS was developed into a screening platform using scintillation proximity assay technology and used to screen ~2,000 chemical compounds. Three inhibitory compounds were identified and analyzed for enzymatic inhibition as well as minimum inhibitory concentrations against clinically relevant bacterial strains. Two of the compounds, BM02E04 and BM04H03, were selected for further studies. These compounds displayed broad‐spectrum antibacterial activity and exhibited moderate inhibitory activity against mutant efflux deficient strains of P. aeruginosa and E. coli. Growth of wild‐type strains was unaffected, indicating that efflux was likely responsible for the lack of sensitivity. The global mode of action was determined using time‐kill kinetics. BM04H03 did not inhibit the growth of human cell cultures at any concentration and BM02E04 only inhibit cultures at the highest concentration tested (400 μg/ml). In conclusion, GlnRS from P. aeruginosa is shown to have a structure similar to that of E. coli GlnRS and two natural product compounds were identified as inhibitors of P. aeruginosa GlnRS with the potential for utility as lead candidates in antibacterial drug development in a time of increased antibiotic resistance.
less than 90% of S. aureus strains are resistant to most penicillin derivatives [2] and ordinary antimicrobial agents like drugs from the family of aminoglycosides, macrolides, chloramphenicols, tetracyclines and fluoroquinolones so known as multidrug resistant Staphylococcus aureus [3]. Increased resistance of MRSA to anti-infective drugs is a threat to global health; so anti-infectives with novel mechanisms must be developed. Our potential target in the drug development for the treatment of MRSA infections is phenylalanine tRNA synthetase which is considered as the most complex and large enzyme of aminoacyl-tRNA synthetases (aaRSs). Aminoacyl-tRNA synthetases (aaRSs) (also A S THE RESISTANCE of Staphylococcus aureus to antibiotics represents a major threat to global health, anti-infectives with novel mechanisms must be developed. Novel compounds were generated as potential phenylalanine tRNA synthetase (PheRS) inhibitors based on the published homology model of S. aureus PheRS to aid the design process using Molecular Operating Environment (MOE) software. PheRS was selected as it is structurally unique enzyme among the aminoacyl-tRNA synthetases (aaRS), it is considerably different from human cytosolic and human mitochondrial aaRS and it is essential and conserved across bacterial species. The designed compounds were synthesized according to different clear schemes. The compounds were confirmed by 1 H NMR, 13 C NMR, HRMS and/or microanalysis, and they were microbiologically evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.