Objectives: A conceptually oriented preprocessing of a large number of potential prognostic factors may improve the development of a prognostic model. This study investigated whether various forms of conceptually oriented preprocessing or the preselection of established factors was superior to using all factors as input.Study Design and Setting: We made use of an existing project that developed two conceptually oriented subgroupings of low back pain patients. Based on the prediction of six outcome variables by seven statistical methods, this type of preprocessing was compared with medical experts' preselection of established factors, as well as using all 112 available baseline factors.Results: Subgrouping of patients was associated with low prognostic capacity. Applying a Lasso-based variable selection to all factors or to domain-specific principal component scores performed best. The preselection of established factors showed a good compromise between model complexity and prognostic capacity. Conclusion:The prognostic capacity is hard to improve by means of a conceptually oriented preprocessing when compared to purely statistical approaches. However, a careful selection of already established factors combined in a simple linear model should be considered as an option when constructing a new prognostic rule based on a large number of potential prognostic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.