Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
The decline of top carnivores has released large herbivore populations around the world, incurring socioeconomic costs such as increased animal–vehicle collisions. Attempts to control overabundant deer in the Eastern United States have largely failed, and deer–vehicle collisions (DVCs) continue to rise at alarming rates. We present the first valuation of an ecosystem service provided by large carnivore recolonization, using DVC reduction by cougars as a case study. Our coupled deer population models and socioeconomic valuations revealed that cougars could reduce deer densities and DVCs by 22% in the Eastern United States, preventing 21,400 human injuries, 155 fatalities, and $2.13 billion in avoided costs within 30 years of establishment. Recently established cougars in South Dakota prevent $1.1 million in collision costs annually. Large carnivore restoration could provide valuable ecosystem services through such socio‐ecological cascades, and these benefits could offset the societal costs of coexistence.
Apex predators may influence carnivore communities through the suppression of competitively dominant mesopredators, however they also provide carrion subsidies that could influence foraging and competition among sympatric mesopredators when small prey is scarce. We assessed coyote Canis latrans and red fox Vulpes vulpes winter diet overlap and composition from scats collected in two study areas with 3‐fold difference in grey wolf Canis lupus density due to a wolf control program. We hypothesized that differences in diet composition would be driven by the use of carrion, and tested whether 1) apex predators facilitate resource overlap, or 2) apex predators facilitate resource partitioning. We estimated the available biomass of snowshoe hares and voles based on pellet density and vole capture rates in each study area. We used molecular analysis to confirm species identification of predator scats, and used microscopic evaluation of prey remains to analyze diet composition of 471 coyote and fox scats. Ungulate carrion, voles and snowshoe hares comprised 73% of coyote and fox diet, and differences in use of carrion and microtines accounted for nearly 60% of the dissimilarity in diet among these canids. Carrion was the top‐ranked item in the coyote diet in both study areas, whereas carrion use by red foxes declined 3‐fold in the study area with higher wolf and small prey abundance. Diet overlap tended to be lower and diet diversity tended to be higher where wolves were more abundant, though these trends were not statistically significant. Taken together, our findings indicate that carrion provisions could facilitate resource partitioning in mesocarnivore communities by alleviating exploitation competition for small mammals.
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AbstractMesocarnivores are increasingly recognized as key drivers of community dynamics, but the effects of bottom-up and abiotic factors on mesocarnivore populations remain poorly understood. We evaluated the effects of snow conditions, prey abundance, and habitat type on the distribution of five sympatric mesocarnivore species in interior Alaska using repeated snow track surveys and occupancy modelling. Snow depth and snow compaction were the best predictors of mesocarnivore occupancy, with differential effects across species. Coyotes (Canis latrans (Say, 1823)) and red foxes (Vulpes vulpes L., 1758) occurred in areas of shallow, compact snow, Canada lynx (Lynx canadensis (Kerr, 1792)) occurred in areas of shallow, fluffy snow, and wolverines (Gulo gulo L., 1758) and marten (Martes americana (Turton, 1806)) occurred in areas of deep, fluffy snow. These findings indicate that altered snow conditions due to climate change may have strong direct effects on the distribution of northern mesocarnivores, with divergent effects across species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.