Background and ObjectivesPurine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients.MethodsData on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained.ResultsA cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties, and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures, and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic variants in PURA without any clear genotype-phenotype associations.DiscussionThe PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations.
IMPORTANCEPostmortem genetic testing of young individuals with sudden death has previously identified pathogenic gene variants. However, prior studies primarily considered highly penetrant monogenic variants, often without detailed decedent and family clinical information.OBJECTIVE To assess genotype and phenotype risk in a diverse cohort of young decedents with sudden death and their families.DESIGN, SETTING, AND PARTICIPANTS Pathological and whole-genome sequence analysis was conducted in a cohort referred from a national network of medical examiners. Cases were accrued prospectively from May 2015 to March 2019 across 24 US states. Analysis began September 2016 and ended November 2020.EXPOSURES Evaluation of autopsy and clinical data integrated with whole-genome sequence data and family member evaluation.RESULTS A total of 103 decedents (mean [SD] age at death, 23.7 [11.9] years; age range, 1-44 years), their surviving family members, and 140 sex-and genetic ancestry-matched controls were analyzed. Among 103 decedents, autopsy and clinical data review categorized 36 decedents with postmortem diagnoses, 23 decedents with findings of uncertain significance, and 44 with sudden unexplained death. Pathogenic/likely pathogenic (P/LP) genetic variants in arrhythmia or cardiomyopathy genes were identified in 13 decedents (12.6%). A multivariable analysis including decedent phenotype, ancestry, and sex demonstrated that younger decedents had a higher burden of P/LP variants and select variants of uncertain significance (effect size, −1.64; P = .001). These select, curated variants of uncertain significance in cardiac genes were more common in decedents than controls (83 of 103 decedents [86%] vs 100 of 140 controls [71%]; P = .005), and decedents harbored more rare cardiac variants than controls (2.3 variants per individual vs 1.8 in controls; P = .006). Genetic testing of 31 parent-decedent trios and 14 parent-decedent dyads revealed 8 transmitted P/LP variants and 1 de novo P/LP variant. Incomplete penetrance was present in 6 of 8 parents who transmitted a P/LP variant.CONCLUSIONS AND RELEVANCE Whole-genome sequencing effectively identified P/LP variants in cases of sudden death in young individuals, implicating both arrhythmia and cardiomyopathy genes. Genomic analyses and familial phenotype association suggest potentially additive, oligogenic risk mechanisms for sudden death in this cohort.
Prenatal exome sequencing (ES) currently has limited use in the clinical setting, but research suggests that it has added diagnostic utility over karyotyping and array techniques for prenatal diagnosis of fetuses presenting with ultrasound abnormalities. The purpose of this study was to assess the attitudes of genetics professionals toward the clinical implementation of prenatal ES in order to guide development of professional guidelines. A survey was developed using themes identified in previous qualitative studies and was distributed to members of the American College of Medical Genetics and Genomics (ACMG), the American Society of Human Genetics (ASHG), and the National Society of Genetic Counselors (NSGC). A total of 498 participants completed some portion of the survey. There was consensus among participants that there would be clinical utility of prenatal ES when used for diagnosis, pregnancy management, and termination decisions. The majority also agreed that prenatal ES was distinct from its current use in the pediatric and adult settings. There were many areas of contention regarding which types of results should be returned to families and whether or not the current ACMG guidelines for return of incidental findings should also apply to the prenatal setting. Overall, professional guidance is needed to address the continuing concerns surrounding prenatal ES as its utilization in this setting is expected to grow.
Background Pediatric dilated cardiomyopathy (DCM) is a well‐known clinical entity; however, phenotype–genotype correlations are inadequately described. Our objective was to provide genotype associations with life‐threatening cardiac outcomes in pediatric DCM probands. Methods and Results We performed a retrospective review of children with DCM at a large pediatric referral center (2007–2016), excluding syndromic, chemotherapy‐induced, and congenital heart disease causes. Genetic variants were adjudicated by an expert panel and an independent clinical laboratory. In a cohort of 109 pediatric DCM cases with a mean age at diagnosis of 4.2 years (SD 5.9), life‐threatening cardiac outcomes occurred in 47% (42% heart transplant, 5% death). One or more pathogenic/likely pathogenic variants were present in 40/109 (37%), and 36/44 (82%) of pathogenic/likely pathogenic variants occurred in sarcomeric genes. The frequency of pathogenic/likely pathogenic variants was not different in patients with familial cardiomyopathy (15/33 with family history versus 25/76 with no family history, P =0.21). TTN truncating variants occurred in a higher percentage of children diagnosed as teenagers (26% teenagers versus 6% younger children, P =0.01), but life‐threatening cardiac outcomes occurred in both infants and teenagers with these TTN variants. DCM with left ventricular noncompaction features occurred in 6/6 patients with MYH7 variants between amino acids 1 and 600. Conclusions Sarcomeric variants were common in pediatric DCM. We demonstrated genotype‐specific associations with age of diagnosis and cardiac outcomes. In particular, MYH7 had domain‐specific association with DCM with left ventricular noncompaction features. Family history did not predict pathogenic/likely pathogenic variants, reinforcing that genetic testing should be considered in all children with idiopathic DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.