This paper presents a computational model and design optimization strategy for shape memory alloy (SMA) flexural actuators. These actuators consist of curved SMA wires embedded within elastic structures; one potential application is positioning microcatheters inside blood vessels during clinical treatments. Each SMA wire is shape-set to an initial curvature and inserted along the neutral axis of a straight elastic member (cast polydimethylsiloxane, PDMS). The elastic structure preloads the SMA, reducing the equilibrium curvature of the composite actuator. Temperature-induced phase transformations in the SMA are achieved via Joule heating, enabling strain recovery and increased bending (increased curvature) in the actuator. Actuator behavior is modeled using the homogenized energy framework, and the effects of two critical design parameters (initial SMA curvature and flexural rigidity of the elastic sleeve) on activation curvature are investigated. Finally, a multi-objective genetic algorithm is utilized to optimize actuator performance and generate a Pareto frontier, which is subsequently experimentally validated.
In this paper, we develop a computational model that can be used to investigate and optimize the performance of shape memory alloy (SMA) bending actuators. These actuators (approximately 7–21 mm in length) consist of curved SMA wires embedded within elastic sleeves and are intended for positioning and anchoring robotic catheters inside blood vessels during clinical treatments. Each SMA wire is shape-set to an initial curvature and inserted along the neutral axis of a straight elastic member (cast heat-resistant silicone with varying section modulus). The elastic member preloads the SMA (or produces a stress-induced phase transformation), reducing the equilibrium curvature of the composite actuator. Temperature-induced phase transformations in the SMA (via Joule heating) enable strain recovery and increased bending (increased curvature) in the composite actuator. The homogenized energy framework is utilized to model the behavior of this composite actuator, and the effects of several critical design parameters (initial SMA curvature and section modulus of the elastic member) on the deactivated and activated curvatures are investigated. Experimental results validate the model, enabling its use as a design tool for bending performance optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.