Diethylstilbestrol (DES) is a potent estrogen mimic that was predominantly used from the 1940s to 1970s in hopes of preventing miscarriage in pregnant women. Decades later, DES is known to enhance breast cancer risk in exposed women, and cause a variety of birth related adverse outcomes in their daughters such as spontaneous abortion, second trimester pregnancy loss, preterm delivery, stillbirth, and neonatal death. Additionally, children exposed to DES in utero suffer from sub/infertility and cancer of reproductive tissues. DES is a pinnacle compound which demonstrates the fetal basis of adult disease. The mechanisms of cancer and endocrine disruption induced by DES are not fully understood. Future studies should focus on common target tissue pathways affected and the health of the DES grandchildren.
Determining the spatial and temporal expression of genes involved in the ovulatory pathway is critical for the understanding of the role of each estrogen receptor in the modulation of folliculogenesis and ovulation. Estrogen receptor (ER)-β is highly expressed in ovarian granulosa cells, and mice lacking ER-β are subfertile due to inefficient ovulation. Previous work has focused on isolated granulosa cells or cultured follicles and, although informative, provides confounding results due to the heterogeneous cell types present including granulosa and theca cells and oocytes and exposure to in vitro conditions. Herein we isolated preovulatory granulosa cells from wild-type (WT) and ERβ-null mice using laser capture microdissection to examine the genomic transcriptional response downstream of pregnant mare serum gonadotropin (mimicking FSH) and pregnant mare serum gonadotropin/human chorionic gonadotropin (mimicking LH) stimulation. This allows for a direct comparison of in vivo granulosa cells at the same stage of development from both WT and ERβ-null ovaries. ERβ-null granulosa cells showed altered expression of genes known to be regulated by FSH (Akap12 and Runx2) as well as not previously reported (Arnt2 and Pou5f1) in WT granulosa cells. Our analysis also identified 304 genes not previously associated with ERβ in granulosa cells. LH-responsive genes including Abcb1b and Fam110c show reduced expression in ERβ-null granulosa cells; however, novel genes including Rassf2 and Megf10 were also identified as being downstream of LH signaling in granulosa cells. Collectively, our data suggest that granulosa cells from ERβ-null ovaries may not be appropriately differentiated and are unable to respond properly to gonadotropin stimulation.
Puberty is an important transition that enables reproduction of mammalian species. Precocious puberty, specifically early thelarche (the appearance of breast “buds”), in girls of multiple ethnic backgrounds is a major health problem in the United States and other countries. The cause for a continued decrease in the age of breast development in girls is unknown, but environmental factors likely play a major role. Laboratory and epidemiological studies have identified several individual environmental factors that affect breast development, but further progress is needed. Current research needs include increased attention to and recording of prenatal and neonatal environmental exposures, testing of marketed chemicals for effects on the mammary gland, and understanding of the mammary gland–specific mechanisms that are altered by chemicals. Such research is required to halt the increasing trend toward puberty at earlier ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.