An elementary way of using language is to refer to objects. Often, these objects are physically present in the shared environment and reference is done via mention of perceivable properties of the objects. This is a type of language use that is modelled well neither by logical semantics nor by distributional semantics, the former focusing on inferential relations between expressed propositions, the latter on similarity relations between words or phrases. We present an account of word and phrase meaning that is perceptually grounded, trainable, compositional, and 'dialogueplausible' in that it computes meanings word-by-word. We show that the approach performs well (with an accuracy of 65% on a 1-out-of-32 reference resolution task) on direct descriptions and target/landmark descriptions, even when trained with less than 800 training examples and automatically transcribed utterances.
We present a new release of OpenDial, an open-source toolkit for building and evaluating spoken dialogue systems. The toolkit relies on an information-state architecture where the dialogue state is represented as a Bayesian network and acts as a shared memory for all system modules. The domain models are specified via probabilistic rules encoded in XML. OpenDial has been deployed in several application domains such as human-robot interaction, intelligent tutoring systems and multi-modal in-car driver assistants.
1 The code for reproducing the results reported in this paper can be found at https://github.com/ dsg-bielefeld/image_wac.
CodeThe code required for reproducing the results reported here can be found at https://github.com/dsg-bielefeld/ image_wac.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.