Madagascar is home to the smallest primates in the world, the mouse lemurs (Microcebus species). Twenty‐four species of mouse lemur are currently recognised and are found in variable ecosystems, from dry forests and spiny deserts to humid forests. Due to their widespread distribution and the large number of sympatric species, mouse lemurs can be used as a model to understand the linkages among species richness, population density, and habitat. As all lemurs are threatened by habitat loss and fragmentation, this information can also be used to inform conservation management. We hypothesise that on an island‐wide scale, we will find higher population densities in western dry forests than in eastern humid forests because the western dry forests exhibit lower species richness, more sympatric habitat use, and lower resource stability than the eastern humid forests. We conducted a literature review of population density estimates of known mouse lemur species, and used those data to conduct a meta‐analysis and estimate overall average population density by geographic region. Our findings suggest that mouse lemur species living in western dry forest generally exhibit higher densities than those in eastern humid forests. This may be partly explained by higher habitat fragmentation in western dry forests, where species co‐occur, but is likely to be a function of the magnitude and variability in seasonally available resources in each forest type. Higher seasonality results in less constant food availability and lower levels of environmental predictability, fostering species capable of coping with environmental change and maintaining high densities throughout periods of resource paucity. Our study highlights the importance of conducting Microcebus population density research that adheres to standardised methodological approaches. We point to the need for population density estimates for several species for which data are lacking. Such knowledge is important to assess the conservation status of these species, but also to enhance our ability to identify the macro‐biogeographical and local ecological drivers of interspecific and intraspecific variability in population density.
Nest survival of ducks is partially a function of the spatiotemporal characteristics of the site at which a bird chooses to nest. Nest survival is also a fundamental component of population growth in waterfowl but is relatively unstudied for cinnamon teal (Spatula cyanoptera). We investigated cinnamon teal nest survival in a managed wetland complex in southern Colorado, USA, and assessed nest site selection to determine whether nest site characteristics were adaptive. We monitored 85 nests in 2015–2017 on Monte Vista National Wildlife Refuge, Colorado and did not detect a difference in nest survival across years. Based on nest site selection data from 2017, cinnamon teal selected nest sites characterized by a lower proportion of forbs than available sites. The relationships between habitat characteristics and nest survival were variable. Microhabitat characteristics exhibited only weak effects on nest survival during the laying stage. Nest survival during incubation was negatively related to the proportion of forbs at the nest site and, to a lesser extent, the proportion of grasses. Nest site selection was predictive of future nest survival based on the percent of forbs and grasses around the nest site, suggesting teal select nest locations to benefit reproductive success. These results have the potential to guide local habitat management actions for breeding waterfowl. © 2020 The Wildlife Society.
Patterns of nest attendance in birds result from complex behaviours and influence the success of reproductive events. Incubation behaviours vary based on individual body condition, energy requirements and environmental factors. We assessed nest attendance patterns in Cinnamon Teal Spatula cyanoptera breeding in the San Luis Valley of Colorado in 2016–2017 using trail and video cameras to observe behaviours throughout incubation. We evaluated the effect of temporal, life‐history and environmental covariates on the frequency and duration of incubation recesses as well as the incubation constancy. There was considerable model uncertainty among the models used to evaluate recess frequency. Recess duration varied according to the interaction between nest age and a quadratic effect of time of day, with hens on older nests taking longer recesses in the afternoon and hens on nests earlier in incubation taking longer recesses in the morning and evening. Incubation constancy decreased with higher ambient temperatures in the study area. This study provides evidence that Cinnamon Teal modify their behaviour during incubation according to the age of the nest and the time of day. These results improve our knowledge of Cinnamon Teal breeding ecology and shed light on the behaviours that fast‐lived species may use to cope with environmental factors during nesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.