Data-adaptable embedded systems operate on a variety of data streams, which requires a large degree of configurability and adaptability to support runtime changes in data stream inputs. Data-adaptable reconfigurable embedded systems, when decomposed into a series of tasks, enable a flexible runtime implementation in which a system can transition the execution of certain tasks between hardware and software while simultaneously continuing to process data during the transition. Efficient runtime scheduling of task transitions is needed to optimize system throughput and latency of the reconfiguration and transition periods. In this article, we provide an overview of a runtime framework enabling the efficient transition of tasks between software and hardware in response to changes in system inputs. We further present and analyze several runtime transition scheduling algorithms and highlight the latency and throughput tradeoffs for two data-adaptable systems. To evaluate the task transition selection algorithms, a case study was performed on an adaptable JPEG2000 implementation as well as three other synchronous dataflow systems characterized by transition latency and communication load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.