This paper presents a comprehensive review of magnetoelastic environmental sensor technology; topics include operating physics, sensor design, and illustrative applications. Magnetoelastic sensors are made of amorphous metallic glass ribbons or wires, with a characteristic resonant frequency inversely proportional to length. The remotely detected resonant frequency of a magnetoelastic sensor shifts in response to different physical parameters including stress, pressure, temperature, flow velocity, liquid viscosity, magnetic field, and mass loading. Coating the magnetoelastic sensor with a mass changing, chemically responsive layer enables realization of chemical sensors. Magnetoelastic sensors can be remotely interrogated by magnetic, acoustic, or optical means. The sensors can be characterized in the time domain, where the resonant frequency is determined through analysis of the sensor transient response, or in the frequency domain where the resonant frequency is determined from the frequency-amplitude spectrum of the sensor.
In this work we report on the complex permittivity spectra and electrical conductivity of both as-fabricated and graphitized multiwall carbon nanotubes (MWNTs). The high-temperature annealing removes the Fe3C catalyst particles present in the as-fabricated material, enabling the intrinsic MWNT properties to be measured. The permittivity spectra of 1 wt % MWNT-polystyrene composite films are measured from 75 to 1875 MHz. Comparison of measurements with an appropriate effective medium model shows that the residual catalyst inclusions in the core of the nanotube increase the average electrical conductivity by approximately a factor of 3.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.