The eMERGE Consortium* , * The advancement of precision medicine requires new methods to coordinate and deliver genetic data from heterogeneous sources to physicians and patients. The eMERGE III Network enrolled >25,000 participants from biobank and prospective cohorts of predominantly healthy individuals for clinical genetic testing to determine clinically actionable findings. The network developed protocols linking together the 11 participant collection sites and 2 clinical genetic testing laboratories. DNA capture panels targeting 109 genes were used for testing of DNA and sample collection, data generation, interpretation, reporting, delivery, and storage were each harmonized. A compliant and secure network enabled ongoing review and reconciliation of clinical interpretations, while maintaining communication and data sharing between clinicians and investigators. A total of 202 individuals had positive diagnostic findings relevant to the indication for testing and 1,294 had additional/secondary findings of medical significance deemed to be returnable, establishing data return rates for other testing endeavors. This study accomplished integration of structured genomic results into multiple electronic health record (EHR) systems, setting the stage for clinical decision support to enable genomic medicine. Further, the established processes enable different sequencing sites to harmonize technical and interpretive aspects of sequencing tests, a critical achievement toward global standardization of genomic testing. The eMERGE protocols and tools are available for widespread dissemination.
Background
In a multisite clinical research collaboration, institutions may or may not use the same common data model (CDM) to store clinical data. To overcome this challenge, we proposed to use Health Level 7’s Fast Healthcare Interoperability Resources (FHIR) as a meta-CDM—a single standard to represent clinical data.
Objective
In this study, we aimed to create an open-source application termed the Clinical Asset Mapping Program for FHIR (CAMP FHIR) to efficiently transform clinical data to FHIR for supporting source-agnostic CDM-to-FHIR mapping.
Methods
Mapping with CAMP FHIR involves (1) mapping each source variable to its corresponding FHIR element and (2) mapping each item in the source data’s value sets to the corresponding FHIR value set item for variables with strict value sets. To date, CAMP FHIR has been used to transform 108 variables from the Informatics for Integrating Biology & the Bedside (i2b2) and Patient-Centered Outcomes Research Network data models to fields across 7 FHIR resources. It is designed to allow input from any source data model and will support additional FHIR resources in the future.
Results
We have used CAMP FHIR to transform data on approximately 23,000 patients with asthma from our institution’s i2b2 database. Data quality and integrity were validated against the origin point of the data, our enterprise clinical data warehouse.
Conclusions
We believe that CAMP FHIR can serve as an alternative to implementing new CDMs on a project-by-project basis. Moreover, the use of FHIR as a CDM could support rare data sharing opportunities, such as collaborations between academic medical centers and community hospitals. We anticipate adoption and use of CAMP FHIR to foster sharing of clinical data across institutions for downstream applications in translational research.
Genomic knowledge is being translated into clinical care. To fully realize the value, it is critical to place credible information in the hands of clinicians in time to support clinical decision making. The electronic health record is an essential component of clinician workflow. Utilizing the electronic health record to present information to support the use of genomic medicine in clinical care to improve outcomes represents a tremendous opportunity. However, there are numerous barriers that prevent the effective use of the electronic health record for this purpose. The electronic health record working groups of the Electronic Medical Records and Genomics (eMERGE) Network and the Clinical Genome Resource (ClinGen) project, along with other groups, have been defining these barriers, to allow the development of solutions that can be tested using implementation pilots. In this paper, we present “lessons learned” from these efforts to inform future efforts leading to the development of effective and sustainable solutions that will support the realization of genomic medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.