Oxidative coupling (OC) through o-quinone intermediates has been established as an efficient and site-selective way to modify protein N-termini and the unnatural amino acid p-aminophenylalanine (paF). Recently, we reported that the tyrosinase-mediated oxidation of phenol-tagged cargo molecules is a particularly convenient method of generating o-quinones in situ. The coupling partners can be easily prepared and stored, the reaction takes place under mild conditions (phosphate buffer, pH 6.5, 4 to 23 °C), and dissolved oxygen is the only oxidant required. Here, we show an important extension of this chemistry for the activation of tyrosine residues that project into solution from the N or C-termini of peptide and protein substrates. Generating the o-quinone electrophiles from tyrosine allows greater flexibility in choosing the nucleophilic coupling partner and expands the scope of the reaction to include C-terminal positions. We also introduce a new bacterial tyrosinase enzyme that shows improved activation for some tyrosine substrates. The efficacy of several secondary amines and aniline derivatives was evaluated in the coupling reactions, providing important information for coupling partner design. This strategy was used to modify the C-termini of an antibody scFv construct and of Protein L, a human IgG kappa light chain binding protein. The use of the modified proteins as immunolabeling agents was also demonstrated.
The synthesis of protein–protein and protein–peptide conjugates is an important capability for producing vaccines, immunotherapeutics, and targeted delivery agents. Herein we show that the enzyme tyrosinase is capable of oxidizing exposed tyrosine residues into o -quinones that react rapidly with cysteine residues on target proteins. This coupling reaction occurs under mild aerobic conditions and has the rare ability to join full-size proteins in under 2 h. The utility of the approach is demonstrated for the attachment of cationic peptides to enhance the cellular delivery of CRISPR-Cas9 20-fold and for the coupling of reporter proteins to a cancer-targeting antibody fragment without loss of its cell-specific binding ability. The broad applicability of this technique provides a new building block approach for the synthesis of protein chimeras.
Site-selective protein−protein coupling has long been a goal of chemical biology research. In recent years, that goal has been realized to varying degrees through a number of techniques, including the use of tyrosinase-based coupling strategies. Early publications utilizing tyrosinase from Agaricus bisporus(abTYR) showed the potential to convert tyrosine residues into ortho-quinone functional groups, but this enzyme is challenging to produce recombinantly and suffers from some limitations in substrate scope. Initial screens of several tyrosinase candidates revealed that the tyrosinase from Bacillus megaterium (megaTYR) is an enzyme that possesses a broad substrate tolerance. We use the expanded substrate preference as a starting point for protein design experiments and show that single point mutants of megaTYR are capable of activating tyrosine residues in various sequence contexts. We leverage this new tool to enable the construction of protein trimers via a charge-directed sequential activation of tyrosine residues (CDSAT).
We report a strategy for chemical protein modification by using tyrosinase enzymes to oxidize exposed tyrosine residues on protein N or C-termini. We explore the chemical space for coupling partners in this reaction and find combinations that can proceed in near quantitative conversion. This strategy is used to conjugate a dye onto a Trastuzumab antibody fragment and a Protein L fragment and demonstrate that these constructs can be used as immunostaining reagents.
Site-selective protein-protein coupling has long been a goal of chemical biology research. In recent years, that goal has been realized to varying degrees through a number of techniques, including the use of tyrosinase-based coupling strategies. Early publications utilizing tyrosinase from <i>Agaricus bisporus</i> showed the potential to convert tyrosine residues into <i>ortho</i>-quinone functional groups, but this enzyme is challenging to produce recombinantly and suffers from some limitations in substrate scope. Initial screens of several tyrosinase candidates revealed that the tyrosinase from <i>Bacillus megaterium</i> (megaTYR) as an enzyme that possesses a broad substrate tolerance. We use the expanded substrate preference as a starting point for protein design experiments and show that single point mutants of megaTYR are capable of activating tyrosine residues in various sequence contexts. We leverage this new tool to enable the construction of protein trimers via a charge-directed sequential activation of tyrosine residues (CDSAT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.