In this paper we describe a general strategy for approaching the Weinstein conjecture in dimension three. We apply this approach to prove the Weinstein conjecture for a new class of contact manifolds (planar contact manifolds). We also discuss how the present approach reduces the general Weinstein conjecture in dimension three to a compactness problem for the solution set of a first order elliptic PDE.
This paper is part of a larger program, the investigation of the chord problem in three-dimensional contact geometry. The main tool will be pseudoholomorphic strips in the symplectization of a three-dimensional contact manifold with two totally real submanifolds L 0 and L 1 as boundary conditions. The submanifolds L 0 and L 1 do not intersect transversally. In this paper we will develop a nonlinear Fredholm theory that guarantees the existence of a family of embedded pseudoholomorphic strips near a given one with suitable properties.
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.