Background. Although herbal medicines are used by patients with cancer in multiple oncology care settings, the magnitude of herbal medicine use in this context remains unclear. The purpose of this review was to establish the prevalence of herbal medicine use among patients with cancer, across various geographical settings and patient characteristics (age and gender categories). Methods. Electronic databases that were searched for data published, from January 2000 to January 2020, were Medline (PubMed), Google Scholar, Embase, and African Index Medicus. Eligible studies reporting prevalence estimates of herbal medicine use amongst cancer patients were pooled using random-effects meta-analyses. Studies were grouped by World Bank region and income groups. Subgroup and meta-regression analyses were performed to explore source of heterogeneity. Results. In total, 155 studies with data for 809,065 participants (53.95% female) met the inclusion criteria. Overall, the pooled prevalence of the use of herbal medicine among patients with cancer was 22% (95% confidence interval (CI): 18%–25%), with the highest prevalence estimates for Africa (40%, 95% CI: 23%–58%) and Asia (28%, 95% CI: 21%–35%). The pooled prevalence estimate was higher across low- and middle-income countries (32%, 95% CI: 23%–42%) and lower across high-income countries (17%, 95% CI: 14%–21%). Higher pooled prevalence estimates were found for adult patients with cancer (22%, 95% CI: 19%–26%) compared with children with cancer (18%, 95% CI: 11%–27%) and for female patients (27%, 95% CI: 19%–35%) compared with males (17%, 95% CI: 1%–47%). Conclusion. Herbal medicine is used by a large percentage of patients with cancer use. The findings of this review highlight the need for herbal medicine to be integrated in cancer care.
Background: Viruses cause various human diseases, some of which become pandemic outbreaks. This study synthesized evidence on antiviral medicinal plants in Africa which could potentially be further studied for viral infections including Coronavirus disease 2019 (COVID-19) treatment.Methods: PUBMED, CINAHIL, Scopus, Google Scholar, and Google databases were searched through keywords; antiviral, plant, herb, and Africa were combined using “AND” and “OR”. In-vitro studies, in-vivo studies, or clinical trials on botanical medicine used for the treatment of viruses in Africa were included.Results: Thirty-six studies were included in the evidence synthesis. Three hundred and twenty-eight plants were screened for antiviral activities of which 127 showed noteworthy activities against 25 viral species. These, were Poliovirus (42 plants), HSV (34 plants), Coxsackievirus (16 plants), Rhinovirus (14plants), Influenza (12 plants), Astrovirus (11 plants), SARS-CoV-2 (10 plants), HIV (10 plants), Echovirus (8 plants), Parvovirus (6 plants), Semiliki forest virus (5 plants), Measles virus (5 plants), Hepatitis virus (3 plants), Canine distemper virus (3 plants), Zika virus (2 plants), Vesicular stomatitis virus T2 (2 plants). Feline herpesvirus (FHV-1), Enterovirus, Dengue virus, Ebola virus, Chikungunya virus, Yellow fever virus, Respiratory syncytial virus, Rift Valley fever virus, Human cytomegalovirus each showed sensitivities to one plant.Conclusion: The current study provided a list of African medicinal plants which demonstrated antiviral activities and could potentially be candidates for COVID-19 treatment. However, all studies were preliminary and in vitro screening. Further in vivo studies are required for plant-based management of viral diseases.
Several studies have been conducted and published on medicinal plants used to manage Diabetes Mellitus worldwide. It is of great interest to review available studies from a country or a region to resort to similarities/discrepancies and data quality. Here, we examined data related to ethnopharmacology and bioactivity of antidiabetic plants used in the Democratic Republic of Congo. Data were extracted from Google Scholar, Medline/PubMed, Scopus, ScienceDirect, the Wiley Online Library, Web of Science, and other documents focusing on ethnopharmacology, pharmacology, and phytochemistry antidiabetic plants used in the Democratic Republic of Congo from 2005 to September 2021. The Kew Botanic Royal Garden and Plants of the World Online web databases were consulted to verify the taxonomic information. CAMARADES checklist was used to assess the quality of animal studies and Jadad scores for clinical trials. In total, 213 plant species belonging to 72 botanical families were reported. Only one plant, Droogmansia munamensis, is typically native to the DRC flora; 117 species are growing in the DRC and neighboring countries; 31 species are either introduced from other regions, and 64 are not specified. Alongside the treatment of Diabetes, about 78.13% of plants have multiple therapeutic uses, depending on the study sites. Experimental studies explored the antidiabetic activity of 133 plants, mainly in mice, rats, guinea pigs, and rabbits. Several chemical classes of antidiabetic compounds isolated from 67 plant species have been documented. Rare phase II clinical trials have been conducted. Critical issues included poor quality methodological protocols, author name incorrectly written (16.16%) or absent (14.25%) or confused with a synonym (4.69%), family name revised (17.26%) or missing (1.10%), voucher number not available 336(92.05%), ecological information not reported (49.59%). Most plant species have been identified and authenticated (89.32%). Hundreds of plants are used to treat Diabetes by traditional healers in DRC. However, most plants are not exclusively native to the local flora and have multiple therapeutic uses. The analysis showed the scarcity or absence of high-quality, in-depth pharmacological studies. There is a need to conduct further studies of locally specific species to fill the gap before their introduction into the national pharmacopeia.
BackgroundMomordica charantia Linnaeus (Cucurbitaceae) has been used traditionally as a nutritious food and as a herbal medicine for type 2 diabetes mellitus. However, human studies that investigated its glycemic control have generated inconsistent findings. Therefore, this systematic review and meta-analysis is aimed at evaluating the safety and efficacy of M. charantia L. preparations in human studies that have investigated its role in glycemic control.MethodsThis protocol has been prepared according to Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). The review will include randomized clinical trials and non-randomized clinical trials. The included studies will have assessed glycemic control of M. charantia preparations with placebo or standard oral anti-hyperglycemic agents in adult pre-diabetes and/or type 2 diabetes mellitus patients and have at least 4 weeks of follow-up. The primary outcomes of review are fasting blood glucose levels, glycosylated hemoglobin A1c, and post-prandial blood glucose level. Electronic database search for published literatures will be conducted without language restriction in EMBASE, MEDLINE/PubMed, the Cochrane Library, SCOPUS, Web of Sciences, and CINAHL databases. Search for gray literatures and references of the retrieved full-text articles will be conducted in Google, Google Scholar, OpenGrey, ProQuest dissertations & Theses, British Library EThos, and university digital library systems. Two independent reviewers will later evaluate full texts, extract data, and assess risk of bias of eligible articles. Publication biases will be assessed by testing asymmetry of funnel plot using Egger’s or Begg’s tests while heterogeneity will be assessed using Cochran Q test, P value, and I2. Revman software version 5.3 will be used for meta-analysis including subgroup and sensitivity analysis.DiscussionThis systematic review and meta-analysis will investigate both safety and efficacy of M. charantia preparations in type 2 diabetes mellitus. The review results will be published in a peer-reviewed journal. The results will bring better understanding of clinical outcomes in treatment of type 2 diabetes mellitus patients and highlight gaps for future research.Systematic review registrationPROSPERO CRD42018083653.Electronic supplementary materialThe online version of this article (10.1186/s13643-018-0847-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.