We prove regularity results such as interior Lipschitz regularity and boundary continuity for the Cauchy-Dirichlet problem associated to a class of parabolic equations inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ a regularization technique of viscosity-type that we find interesting in itself.
We study the Cauchy-Dirichlet problem associated to a phase transition modeled upon the degenerate two-phase Stefan problem. We prove that weak solutions are continuous up to the parabolic boundary and quantify the continuity by deriving a modulus. As a byproduct, these a priori regularity results are used to prove the existence of a so-called physical solution.
ABSTRACT. We study nonlinear parabolic PDEs with Orlicz-type growth conditions. The main result gives the existence of a unique solution to the obstacle problem related to these equations. To achieve this we show the boundedness of weak solutions and that a uniformly bounded sequence of weak supersolutions converges to a weak supersolution. Moreover, we prove that if the obstacle is continuous, so is the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.