Extracellular vesicles (EV), including exosomes and microvesicles (MV), represent a rapidly expanding field of research with diagnostic and therapeutic applications. Although many aspects of EV function remain to be revealed and broad investigations are warranted, most published findings focus on only one vesicle category or a non-separated mix of EVs. In this paper, we investigated both MVs and exosomes from Ovalbumin (OVA)-pulsed dendritic cells for their immunostimulatory potential side-by-side in vivo. Only exosomes induced antigen-specific CD8+ T-cells, and were more efficient than MVs in eliciting antigen-specific IgG production. Further, mainly exosome-primed mouse splenocytes showed significant ex vivo interferon gamma production in response to antigen restimulation. Exosomes carried high levels of OVA, while OVA in MVs was barely detectable, which could explain the more potent antigen-specific response induced by exosomes. Moreover, exosomes induced increased germinal center B cell proportions, whereas MVs had no such effect. Immunisation with both vesicle types combined showed neither inhibitory nor synergistic effects. We conclude that DC-derived MVs and exosomes differ in their capacity to incorporate antigen and induce immune responses. The results are of importance for understanding the role of EVs in vivo, and for future design of vesicle-based immunotherapies and vaccines.
Cells of the airways are constantly exposed to environmental hazards including cigarette smoke, irritants, pathogens, and mechanical insults. Maintaining barrier integrity is vital, and mounting responses to threats depends on intercellular communication. Extracellular vesicles (EVs), including exosomes and microvesicles, are major signal mediators between cells, shuttling cargo in health and disease. Depending on the state of the originating cells, EVs are capable of inducing proinflammatory effects including antigen presentation, cellular migration, apoptosis induction, and inflammatory cytokine release. Cells of the airways release EVs, which can be found in bronchoalveolar lavage fluid. EVs of the airways can support inflammation in the lung, but may also exit into the circulation and carry a cocktail of pro-inflammatory molecules to recipient cells in distant organs. In this review, we discuss the possibility that EVs originating from the airways contribute to dissemination of inflammation in both lung disorders and systemic inflammatory conditions.
While pro-inflammatory immune responses are a requirement to combat microbes, uncontrolled self-directed inflammatory immune responses are the hallmark of autoimmune diseases. Restoration of immunological tolerance involves both suppression of ongoing tissue-destructive immune responses and re-education of the host immune system. Both functionally immunosuppressive macrophages (M2) and regulatory T cells (Tregs) are implicated in these processes. Their mutual interaction is synergistic in this context and adoptive transfer of each cell type has been functioning as immunotherapy in experimental models, being particularly effective when using M2 macrophages generated with an optimized interleukin-4 (IL-4)/interleukin-10 (IL-10)/transforming growth factor-β (TGF-β) combination. As a prerequisite for eventual translation of M2 therapy into clinical settings we herein studied the induction, stability and mechanism of generation of human induced Tregs (iTregs) by M2 macrophages generated with IL-4/IL-10/TGF-β. The supernatants of monocyte-derived human M2 macrophages robustly induced FOXP3 and other Treg signature molecules such as CTLA-4 and IKZF4 in human naïve CD4 T cells. M2-induced iTregs displayed enhanced FOXP3 stability and low expression of pro-inflammatory cytokines interferon-γ and IL-17, as well as functional immunosuppressive activity compared with control T cells. The FOXP3-inducing activity was dependent on TGF-β, which was both expressed and captured with re-release by M2 macrophages into the soluble supernatant fraction, in which the TGF-β was not confined to extracellular vesicles such as exosomes. We propose that adoptive transfer of human M2 macrophages may be exploited in the future to induce Tregs in situ by delivering TGF-β, which could be developed as a therapeutic strategy to target autoimmune and other inflammatory diseases.
Together, these data contribute to understanding the role of exosomes in lung disease and provide suggestions for highly warranted sarcoidosis biomarkers. Furthermore, the validation of an exosome-associated biomarker in the blood of patients provides novel, and less invasive, opportunities for disease diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.