Knowledge is an important asset for an organisation as it facilitates organisational growth. To facilitate knowledge creation and sharing, this is where a knowledge-intensive system is required. One key area that hinders the effective use of knowledge-intensive systems in an organisation is the lack of knowledge quality. This causes the system to be underutilised, and as a result, knowledge will not be captured or shared effectively. Recent KM findings identified that machine learning could be beneficial to knowledge management. A literature review was conducted to identify knowledge of quality attributes and machine learning algorithms. From the findings, it was identified that the decision tree algorithm has a strong potential at classifying knowledge quality. An experiment was then devised to identify the training model required and measure its effectiveness using a pilot test. This involved using a knowledge-intensive system and mapping its variables to the respective knowledge quality attributes. From the experimentation result, the training model is then devised before implemented in a pilot test. The pilot test involved collecting knowledge using the same knowledge-intensive system before running the training model. From the results, it was identified that the decision tree could classify knowledge quality though the results yielded four different outputs at classifying knowledge quality. It was concluded that machine learning is beneficial in the area of knowledge management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.