The INTERSPEECH 2021 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the COVID-19 Cough and COVID-19 Speech Sub-Challenges, a binary classification on COVID-19 infection has to be made based on coughing sounds and speech; in the Escalation Sub-Challenge, a three-way assessment of the level of escalation in a dialogue is featured; and in the Primates Sub-Challenge, four species vs background need to be classified. We describe the Sub-Challenges, baseline feature extraction, and classifiers based on the 'usual' COMPARE and BoAW features as well as deep unsupervised representation learning using the AUDEEP toolkit, and deep feature extraction from pre-trained CNNs using the DEEP SPECTRUM toolkit; in addition, we add deep end-to-end sequential modelling, and partially linguistic analysis.
Automated classification of animal vocalisations is a potentially powerful wildlife monitoring tool. Training robust classifiers requires sizable annotated datasets, which are not easily recorded in the wild. To circumvent this problem, we recorded four primate species under semi-natural conditions in a wildlife sanctuary in Cameroon with the objective to train a classifier capable of detecting species in the wild. Here, we introduce the collected dataset, describe our approach and initial results of classifier development. To increase the efficiency of the annotation process, we condensed the recordings with an energy/change based automatic vocalisation detection. Segmenting the annotated chunks into training, validation and test sets, initial results reveal up to 82% unweighted average recall (UAR) test set performance in four-class primate species classification.
The General Data Protection Regulation (GDPR) grants all natural persons the right to access their personal data if this is being processed by data controllers. The data controllers are obliged to share the data in an electronic format and often provide the data in a so called Data Download Package (DDP). These DDPs contain all data collected by public and private entities during the course of a citizens’ digital life and form a treasure trove for social scientists. However, the data can be deeply private. To protect the privacy of research participants while using their DDPs for scientific research, we developed a de-identification algorithm that is able to handle typical characteristics of DDPs. These include regularly changing file structures, visual and textual content, differing file formats, differing file structures and private information like usernames. We investigate the performance of the algorithm and illustrate how the algorithm can be tailored towards specific DDP structures.
The General Data Protection Regulation (GDPR) grants all natural persons the right of access to their personal data if this is being processed by data controllers. The data controllers are obliged to share the data in an electronic format and often provide the data in a so called Data Download Package (DDP). These DDPs contain all data collected by public and private entities during the course of citizens' digital life and form a treasure trove for social scientists. However, the data can be deeply private. To protect the privacy of research participants while using their DDPs for scientific research, we developed de-identification software that is able to handle typical characteristics of DDPs such as regularly changing file structures, visual and textual content, different file formats, different file structures and accounting for usernames. We investigate the performance of the software and illustrate how the software can be tailored towards specific DDP structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.