The tricalcium phosphate/fatty acid ink described here and its 3D printing may be sufficiently simple and effective to enable rapid, on-demand and in-hospital fabrication of individualized ceramic implants that allow clinicians to use them for treatment of bone trauma.
Skull surgery, also known as craniectomy, is done to treat trauma or brain diseases and may require the use of an implant to reestablish skull integrity. This study investigates the performance of 3D printed bone implants in a mouse model of craniectomy with the aim of making biodegradable porous implants that can ultimately be fitted to a patient's anatomy. A nonpolymeric thermoplastic bioink composed of fatty acids and β‐tricalcium phosphate was used to 3D print the skull implants. Some of these were sintered to yield pure β‐tricalcium phosphate implants. The performance of nonsintered and sintered implants was then compared in two semi‐quantitative murine calvarial defect models using computed tomography, histology, and luciferase activity. Both types of implants were biocompatible, but only sintered implants promoted defect healing, with osseointegration to adjacent bone and the formation of new bone and bone marrow tissue in the implant pores. Luciferase scanning and histology showed that mesenchymal stem cells seeded onto the implants engraft and proliferate on the implants after implantation and contribute to forming bone. The experiments indicate that fatty acid‐based 3D printing enables the creation of biocompatible and bone‐forming β‐tricalcium phosphate implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.