We present the first measurements of the radiant and orbit of meteoroids that are part of the unusual Perseid activity called the ‘Perseid Filament’. This filament was encountered by Earth in the years before and after the return of the comet to perihelion in December of 1992. Between 1989 and 1996, there were brief meteor outbursts of near‐constant duration with a symmetric activity profile. In 1993, however, rates increased more gradually to the peak. That gradual increase is identified here as a separate dust component, which we call the ‘Nodal Blanket’. We find that the Nodal Blanket has a very small radiant dispersion. On the other hand, the Perseid Filament has a radiant that is significantly dispersed and systematically displaced by 0.3°. This dispersion implies that unusually high ejection velocities or planetary perturbations must have had time to disperse the stream. In both cases, one would expect a rapid dispersion of matter along the comet orbit. In order to explain the concentration of dust near the comet position, we propose a novel scenario involving long‐term accumulation in combination with protection of the region near the comet against close encounters with Jupiter due to librations of the comet orbit around the 1:11 mean‐motion resonance.
Abstract-Seventy-five orbits of Leonid meteors obtained during the 1998 outburst are presented. Thirtyeight are precise enough to recognize significant dispersion in orbital elements. Results from the nights of 1998 November 16/17 and 17/18 differ, in agreement with the dominant presence of different dust components. The shower rate profile of 1998 November 16/17 was dominated by a broad component, rich in bright meteors. The radiant distribution is compact. The semimajor axis is conjined to values close to that of the parent comet, whereas the distribution of inclination has a central condensation in a narrow range. On the other hand, 1998 November 17/18 was dominated by dust responsible for a more narrow secondary peak in the flux curve. The declination of the radiant and the inclination of the orbit are more widely dispersed. The argument of perihelion, inclination, and the perihelion distance are displaced. These data substantiate the hypothesis that trapping in orbital resonances is important for the dynamical evolution of the broad component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.