Environmental change and decreased ice cover in the Arctic make new areas accessible to humans and animals. It is important to understand how these changes impact marine mammals, such as beluga whales (Delphinapterus leucas Pallas, 1776). Hearing is crucial in the daily lives of cetaceans. Consequently, we need normal baselines to further understand how anthropogenic noise affects these animals. Relatively little is known about the inner ear morphology of belugas, particularly the organ of Corti, or hearing organ, found within the cochlea. The base of the cochlea encodes for high-frequency sounds, while low frequencies are detected in the apex. We showed differences between the apex, or centremost point of the cochlea, and the base, the region closest to the stapes. Our results showed that average outer hair cell density changed from 148 cells/mm in the apex to 117 cells/mm in the base. Cell width varied between the two regions, from 5.8 μm in the apex to 8.4 μm in the base. These results revealed variation throughout the cochlea, and thus the need to understand the basic morphology, to give further insight on hearing function in belugas and allow us to recognize damage if or when we find it.
Morphometric analysis of the inner ear of mammals can provide information for cochlear frequency mapping, a species-specific designation of locations in the cochlea at which different sound frequencies are encoded. Morphometric variation occurs in the hair cells of the organ of Corti along the cochlea, with the base encoding the highest frequency sounds and the apex encoding the lowest frequencies. Changes in cell shape and spacing can yield additional information about the biophysical basis of cochlear tuning mechanisms. Here, we investigate how morphometric analysis of hair cells in mammals can be used to predict the relationship between frequency and cochlear location. We used linear and geometric morphometrics to analyze scanning electron micrographs of the hair cells of the cochleae in Parnell's mustached bat (Pteronotus parnellii) and Wistar rat (Rattus norvegicus) and determined a relationship between cochlear morphometrics and their frequency map. Sixteen of twenty-two of the morphometric parameters analyzed showed a significant change along the cochlea, including the distance between the rows of hair cells, outer hair cell width, and gap width between hair cells. A multiple linear regression model revealed that nine of these parameters are responsible for 86.9 % of the variation in these morphometric data. Determining the most biologically relevant measurements related to frequency detection can give us a greater understanding of the essential biomechanical characteristics for frequency selectivity during sound transduction in a diversity of animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.