Inhalation of environmental particulate matter (PM) is correlated with adverse health effects in humans, but gene products that couple detection with cellular responses, and the specific properties of PM that target different pathways, have not been fully elucidated. TRPA1 and V1 are two cation channels expressed by sensory neurons and non-neuronal cells of the respiratory tract that have been implicated as possible mediators of PM toxicity. The goals of this research were to determine if environmental PM preferentially activated TRPA1 and to elucidate the criteria responsible for selectivity. Quantification of TRPA1 activation by 4 model PM revealed that diesel exhaust PM (DEP) and coal fly ash PM (CFA1) were TRPA1 agonists at concentrations >0.077 mg/ml. DEP was more potent and approximately 97% of the activity of DEP was recovered by serial extraction of the solid DEP with ethanol and hexane:n-butyl chloride. Modification of the electrophile/agonist binding sites on TRPA1 (C621, C641, C665 and K710) to non-nucleophilic residues reduced TRPA1 activation by DEP and abolished activation by DEP extracts as well as multiple individual electrophilic chemical components of DEP. However, responses to CFA1 and DEP solids were not affected by these mutations. Activity-guided fractionation of DEP and high resolution mass spectroscopy identified several new DEP-derived TRPA1 agonists and activation of mouse dorsal root ganglion neurons demonstrated TRPA1 is a primary target for DEP in a heterogeneous population of primary sensory nerves. It is concluded that TRPA1 is a specific target for electrophilic chemical components of DEP and proposed that activation of TRPA1 in the respiratory tract is likely to be an important mechanism for DEP pneumotoxicity.
Background Human biodistribution, bioprocessing and possible toxicity of nanoscale silver receives increasing health assessment. Methods We prospectively studied commercial 10- and 32-ppm nanoscale silver particle solutions in a single-blind, controlled, cross-over, intent-to-treat, design. Healthy subjects (n=60) underwent metabolic, blood counts, urinalysis, sputum induction, and chest and abdomen magnetic resonance imaging. Silver serum and urine content was determined. Results No clinically important changes in metabolic, hematologic, or urinalysis measures were identified. No morphological changes were detected in the lungs, heart or abdominal organs. No significant changes were noted in pulmonary reactive oxygen species or pro-inflammatory cytokine generation. Conclusion In vivo oral exposure to these commercial nanoscale silver particle solutions does not prompt clinically important changes in human metabolic, hematologic, urine, physical findings or imaging morphology. Further study of increasing time exposure and dosing of silver nanoparticulate silver, and observation of additional organ systems is warranted to assert human toxicity thresholds.
Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM<2.5 μm) of wood smoke were the most potent TRPA1 agonists and several chemical constituents of wood smoke particulate: 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pre-treated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.
Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 Ͼ diesel exhaust PM Ͼ crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4␣ (C4␣), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.
Inhaled irritants activate transient receptor potential ankyrin-1 (TRPA1), resulting in cough, bronchoconstriction, and inflammation/edema. TRPA1 is also implicated in the pathogenesis of asthma. Our hypothesis was that particulate materials activate TRPA1 via a mechanism distinct from chemical agonists and that, in a cohort of children with asthma living in a location prone to high levels of air pollution, expression of uniquely sensitive forms of TRPA1 may correlate with reduced asthma control. Variant forms of TRPA1 were constructed by mutating residues in known functional elements and corresponding to single-nucleotide polymorphisms in functional domains. TRPA1 activity was studied in transfected HEK-293 cells using allyl-isothiocynate, a model soluble electrophilic agonist; 3,5-ditert butylphenol, a soluble nonelectrophilic agonist and a component of diesel exhaust particles; and insoluble coal fly ash (CFA) particles. The N-terminal variants R3C and R58T exhibited greater, but not additive, activity with all three agonists. The ankyrin repeat domain-4 single nucleotide polymorphisms E179K and K186N exhibited decreased response to CFA. The predicted N-linked glycosylation site residues N747A and N753A exhibited decreased responses to CFA, which were not attributable to differences in cellular localization. The pore-loop residue R919Q was comparable to wild-type, whereas N954T was inactive to soluble agonists but not CFA. These data identify roles for ankyrin domain-4, cell surface N-linked glycans, and selected pore-loop domain residues in the activation of TRPA1 by insoluble particles. Furthermore, the R3C and R58T polymorphisms correlated with reduced asthma control for some children, which suggest that TRPA1 activity may modulate asthma, particularly among individuals living in locations prone to high levels of air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.