Background
Ongoing
Helicobacter pylori
(HP) infection triggers a chronic active gastritis. Eradicating HP reduces gastric inflammation, but does not eliminate it. We sought to characterize this persistent gastritis, and demonstrate the persistence of HP-specific Th17 responses in individuals previously infected with HP but who no longer had evidence of ongoing infection.
Methodology/Principal Findings
Study subjects were divided into 3 groups 55 individuals had active HP infection (group A), 41 were diagnosed with previous HP infection (group P), and 59 were naïve to HP (group N). Blood and gastric tissue were obtained with written informed consent from all subjects, and immune responses were evaluated using flow cytometry, semi-quantitative real time PCR, immunofluorescent staining, ELISA, and multiplex cytometric bead array for cytokine quantification. Elevated IL-17A responses were observed in patients from group A compared to group N. Interestingly, IL-17A responses remained persistently elevated in the blood and gastric mucosa of individuals from group P, despite the absence of ongoing HP infection. Using purified CD4
+
T cells as effectors and antibodies that blocked antigen presentation by MHC Class II, we showed that these persistent IL-17A responses were mediated primarily by HP-specific Th17 cells, rather than other immune cells that have also been described to secrete IL-17A. Gastric mucosal IL-1β levels were also persistently elevated in group P, and neutralisation of IL-1β reduced the HP-specific IL-17A response of purified CD4
+
T cells to autologous HP-pulsed antigen presenting cells in vitro, suggesting a functional association between IL-1β and the persistent Th17 response in group P patients.
Conclusions/Significance
Despite lack of ongoing HP infection, HP-specific Th17 cells persist in the blood and gastric mucosa of individuals with past HP infection. We speculate that this persistent inflammation might contribute to gastric mucosal pathology, for example, persistent increased gastric cancer risk despite eradication of HP.
BackgroundComposition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall.MethodsThe inner surface of extracted arteries (rabbit abdominal aorta, human coronary artery) was illuminated by 405 nm excitation light and multispectral fluorescence images were obtained. Pathological examination of human coronary artery samples were carried out and thickness of arteries were calculated by measuring combined media and intima thickness.ResultsThe fluorescence spectra in atherosclerotic sites were different from those in normal sites. Multiple regions of interest (ROI) were selected within each sample and a ratio between two fluorescence intensity differences (where each intensity difference is calculated between an identifier wavelength and a base wavelength) from each ROI was determined, allowing for discrimination of atherosclerotic sites. Fluorescence intensity and thickness of artery were found to be significantly correlated.ConclusionsThese results indicate that multispectral fluorescence imaging provides qualitative and quantitative evaluations of atherosclerosis and is therefore a viable method of diagnosing the disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12938-016-0220-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.