Aims/hypothesis Pancreatic beta cell dedifferentiation, transdifferentiation into other islet cells and apoptosis have been implicated in beta cell failure in type 2 diabetes, although the mechanisms are poorly defined. The endoplasmic reticulum stress response factor X-box binding protein 1 (XBP1) is a major regulator of the unfolded protein response. XBP1 expression is reduced in islets of people with type 2 diabetes, but its role in adult differentiated beta cells is unclear. Here, we assessed the effects of Xbp1 deletion in adult beta cells and tested whether XBP1-mediated unfolded protein response makes a necessary contribution to beta cell compensation in insulin resistance states. Methods Mice with inducible beta cell-specific Xbp1 deletion were studied under normal (chow diet) or metabolic stress (high-fat diet or obesity) conditions. Glucose tolerance, insulin secretion, islet gene expression, alpha cell mass, beta cell mass and apoptosis were assessed. Lineage tracing was used to determine beta cell fate. Results Deletion of Xbp1 in adult mouse beta cells led to beta cell dedifferentiation, beta-to-alpha cell transdifferentiation and increased alpha cell mass. Cell lineage-specific analyses revealed that Xbp1 deletion deactivated beta cell identity genes (insulin, Pdx1, Nkx6.1, Beta2, Foxo1) and derepressed beta cell dedifferentiation (Aldh1a3) and alpha cell (glucagon, Arx, Irx2) genes. Xbp1 deletion in beta cells of obese ob/ob or high-fat diet-fed mice triggered diabetes and worsened glucose intolerance by disrupting insulin secretory capacity. Furthermore, Xbp1 deletion increased beta cell apoptosis under metabolic stress conditions by attenuating the antioxidant response. Conclusions/interpretation These findings indicate that XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and is required for beta cell compensation and prevention of diabetes in insulin resistance states. Graphical abstract
Aims/hypothesis Mild islet inflammation has been suggested as a contributing factor to beta cell failure in type 2 diabetes. Macrophage levels are elevated in the islets of humans and mice with type 2 diabetes, but their effects on beta cells are not understood. Our goal was to examine the gene expression changes in islet-associated macrophages in obesity models with opposing disposition to diabetes development and to assess their potential contribution to beta cell (mal)adaptation. Methods Islets were isolated from lean control mice, obese diabetes-prone db/db mice and obese diabetes-resistant ob/ob mice. Macrophages were sorted using flow cytometry. Islets were treated ex vivo with clodronate-containing liposomes to deplete macrophages. Gene expression was assessed by real-time RT-PCR. Results Macrophage levels were increased in islets from db/db mice but not in islets from ob/ob mice compared with lean control mice. Macrophages from db/db and ob/ob islets displayed distinct changes in gene expression compared with control islet macrophages, suggesting differential shifts in functional state. Macrophages from db/db islets displayed increased expression of interferon regulatory factor 5 (Irf5), IL-1 receptor antagonist (Il1rn) and mannose receptor C-type 1 (Mrc1), whereas macrophages from ob/ob islets showed elevated levels of transforming growth factor beta 1 (Tgfb1) and reduced IL-1β (Il1b). Clodronate-liposome treatment of islets depleted macrophages, as evidenced by reduced mRNA expression of Cd11b (also known as Itgam) and F4/80 (also known as Adgre1) compared with PBS-liposome-treated islets. The depletion of macrophages in db/db islets increased the expression of genes related to beta cell identity. The mRNA levels of islet-associated transcription factors (Mafa and Pdx1), glucose transporter (Glut2 [also known as Slc2a2]), ATP-sensitive K + channel (Kcnj11), incretin receptor (Gipr) and adaptive unfolded protein response (UPR) genes (Xbp1, Hspa5, Pdia4 and Fkbp11) were increased in db/ db islets after macrophage depletion, whereas the mRNA levels of the deleterious UPR effector, Ddit3, were reduced. In contrast, depletion of macrophages in islets of ob/ob mice did not affect beta cell identity gene expression. Conclusions/interpretation The findings of this study suggest that distinct alterations in islet macrophages of obese mice are critically important for the disruption of beta cell gene expression in diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.