Radar altimetry provides unique information on water stages of inland hydro-systems. In this study, the performance of seven altimetry missions, among the most commonly used in land hydrology (i.e., European Remote-Sensing Satellite-2 (ERS-2), ENVIronment SATellite (ENVISAT), Satellite with Argos and ALtika (SARAL), Jason-1, Jason-2, Jason-3 and Sentinel-3A), are assessed using records from a dense in situ network composed of 19 gauge stations in the Inner Niger Delta (IND) from 1995 to 2017. Results show an overall very good agreement between altimetry-based and in situ water levels with correlation coefficient (R) greater than 0.8 in 80% of the cases and Root Mean Square Error (RMSE) lower than 0.4 m in 48% of cases. Better agreement is found for the recently launched missions such as SARAL, Jason-3 and Sentinel-3A than for former missions, indicating the advance of the use of the Ka-band for SARAL and of the Synthetic-aperture Radar (SAR) mode for Sentinel-3A. Cross-correlation analysis performed between water levels from the same altimetry mission leads to time-lags between the upstream and the downstream part of the Inner Niger Delta of around two months that can be related to the time residence of water in the drainage area.
Lakes and reservoirs have been identified as sentinels of climate change. Tonle Sap is the largest lake in both the Mekong Basin and Southeast Asia and because of the importance of its ecosystem, it is has been described as the "heart of the lower Mekong". Its seasonal cycle depends on the annual flood pulse governed by the flow of the Mekong River. This study provides an impact analysis of recent climatic events from El Niño 1997/1998 to El Niño 2015/2016 on surface storage variations in the Tonle Sap watershed determined by combining remotely sensed observations, multispectral images and radar altimetry from 1993 to 2017. The Lake's surface water volume variations are highly correlated with rainy season rainfall in the whole Mekong River Basin (R = 0.84) at interannual time-scale. Extreme droughts and floods can be observed when precipitation deficit and excess is recorded in both the Tonle Sap watershed and the Mekong River Basin during moderate to very strong El Niño/La Niña events (R = -0.70) enhanced by the Pacific Decadal Oscillation (R = -0.68). Indian and Western North Pacific Monsoons were identified as having almost equal influence. Below normal vegetation activity was observed during the first semester of 2016 due to the extreme drought in 2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.