Degradation reactions on diclofenac-monoglycerides (3a,b), diclofenac-(p-hydroxybenzoate)-2-monoglyceride (3c), diclofenac (1), and diclofenac lactam (4) were performed at 37 °C in isotonic buffer solutions (apparent pH range 1-8) containing varying concentrations of acetonitrile (ACN). The concentration remaining of each analyte was measured versus time. Diclofenac-monoglycerides and diclofenac-(p-hydroxybenzoate)-2-monoglyceride (3c) were both found to undergo facile and complete hydrolysis in pH 7.4 isotonic phosphate buffer/10% ACN. Under mildly acidic, neutral or alkaline conditions, diclofenac-(p-hydroxybenzoate)-2-monoglyceride (3c) had the fastest hydrolysis rate (t1/2 = 3.23 h at pH 7.4), with simultaneous formation of diclofenac lactam (4) and diclofenac (1). Diclofenac-monoglycerides (3a,b) hydrolyzed more slowly under the same conditions, to again yield both diclofenac (1) and diclofenac lactam (4). There was also transesterification of diclofenac-2-monoglyceride (3b) to its regioisomer, diclofenac-1-monoglyceride (3a) across the pH range. Diclofenac was shown to be stable in neutral or alkaline conditions but cyclized to form the lactam (4) in acidic conditions. Conversely, the lactam (4) was stable under acidic conditions but was converted to an unknown species under alkaline or neutral conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.