Food partitioning among coexisting species in different habitats remains an important research topic in trophic ecology. In this work, we combined carbon and nitrogen stable isotope ratios and stomach content analyses to investigate differences in diet and niche overlap of two congeneric juvenile mullet species (Mugil curema and Mugil liza) coexisting in a marine surf-zone and an estuarine zone in southern Brazil (29 o S). These habitats have contrasting levels of food availability, especially in terms of prey diversity, with higher microalgae diversity in the estuary than in the marine surf-zone. In these contrasting conditions, we predicted that both mullet species will have (a) higher niche overlap and smaller niche breadth at the marine surf-zone due to the common exploration of highly abundant surf-zone diatoms and (b) lower niche overlap and higher niche breadth inside the estuary due to selective feeding on more diverse food resources. Isotope niche areas (measured as standard ellipse areas) were higher in the estuary (6.10 and 6.18) than in the marine surf-zone (3.68 and 3.37) for both M. curema and M. liza, respectively. We observed an overlap of 52% in isotopic niches of both species in the marine surf-zone and none in the estuary. We also found contrasting patterns in the diet composition between species according to the habitat. At the marine surfzone, diatoms of the classes Bacillariophyceae and Coscinodiscophyceae dominated (> 99%) the food content of both mullet species. In contrast, green algae, cyanobacteria, dinoflagellates and flagellates comprised the diet of both species in the estuary. These results could be explained by spatial differences in food availability (especially regarding diversity of microalgae) between both habitats. At the marine site, both species explored the most abundant microalgae available (mostly the surf-zone diatom Asterionellopsis cf. guyunusae and fragments of Coscinodiscus), whereas in the estuary both species shifted their diets to explore the greater diversity of microalgae resources. Overall, our findings revealed that niche partitioning theory could not fully predict changes in breadth and overlap of food niches of estuarine dependent fish species with complex life cycles encompassing marine to estuarine systems with contrasting food availabilities.
Aim Urbanization leads to rapid changes in ecosystem structure and function. Wetlands on university campuses under urbanization pressure could be used as case studies of multidisciplinary aquatic research and good environmental practices promoting sustainability. Methods A paleolimnological study was undertaken in a semi-artificial lake on a university campus in southern Brazil to trace historical impacts and ecological changes back to the mid-1970s through complementary approaches: historical data, nutrients, δ13C and δ15N stable isotopes, diatoms, microplastics and associated microbial community analysis. Results The eutrophication process started to intensify after the lake was used for nocturnal roosting by waterbirds, and especially after the establishment of constructions along the margins with septic tank sanitary sewage, which eventually spilled and leached into the lake. Over decades, we identified a limnological hypertrophication process leading to recurrent cyanobacterial blooms and massive macrophyte proliferation coupled with changes in isotopic ratios and algal occupation with several transitions between shallow lake alternative states. Such a limnological process has resembled the paleolimnological eutrophication trends and isotopic changes in sedimentary organic matter. The microplastic deposition was detected as a proxy for the intensification of urbanization, especially during the construction of the University facilities. Conclusions The combined use of paleolimnological and historical limnological data represents a powerful approach for inferring both natural and cultural impacts on the lake, and identifying management strategies based on such scientific information.
Aim We evaluated changes in periphyton biomass and the composition of benthic diatom communities along a gradient of urbanization in 10 coastal streams located on the coastal plain of southernmost Brazil. Methods At each coastal stream, we obtained limnological variables and periphytic material from the stolon of the aquatic macrophyte Hydrocotyle ranunculoides for further analyses of chlorophyll a and diatoms. Results Total phosphorus was the only limnological variable selected by the statistical models, showing a positive relationship with periphyton biomass and a negative relationship with diatom species richness in these streams. Species composition (for both presence-absence and abundance data) was also explained by total phosphorus. Further, we observed a nested distribution of diatom species along the streams, in which poorer communities of streams with higher concentrations of phosphorous are subsets of richer communities from streams with lower concentrations of the nutrient. Conclusions Our study shows that water quality modifications caused by eutrophication are leading to the loss of species and changes in the structure of biological communities in ecotones such as coastal streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.