Epimastigote forms of Trypanosoma cruzi (the etiologic agent of Chagas disease) internalize and store extracellular macromolecules in lysosome-related organelles (LROs) called reservosomes, which are positive for the cysteine protease cruzipain. Despite the importance of endocytosis for cell proliferation, macromolecule internalization remains poorly understood in the most clinically relevant proliferative form, the intracellular amastigotes found in mammalian hosts. The main obstacle was the lack of a simple method to isolate viable intracellular amastigotes from host cells. In this work we describe the fast and efficient isolation of viable intracellular amastigotes by nitrogen decompression (cavitation), which allowed the analysis of amastigote endocytosis, with direct visualization of internalized cargo inside the cells. The method routinely yielded 5x107 amastigotes—with typical shape and positive for the amastigote marker Ssp4—from 5x106 infected Vero cells (48h post-infection). We could visualize the endocytosis of fluorescently-labeled transferrin and albumin by isolated intracellular amastigotes using immunofluorescence microscopy; however, only transferrin endocytosis was detected by flow cytometry (and was also analyzed by western blotting), suggesting that amastigotes internalized relatively low levels of albumin. Transferrin binding to the surface of amastigotes (at 4°C) and its uptake (at 37°C) were confirmed by binding dissociation assays using acetic acid. Importantly, both transferrin and albumin co-localized with cruzipain in amastigote LROs. Our data show that isolated T. cruzi intracellular amastigotes actively ingest macromolecules from the environment and store them in cruzipain-positive LROs functionally related to epimastigote reservosomes.
Protein palmitoylation is a post-translational modification that contributes to determining protein localization and function. Palmitoylation has been described in trypanosomatid protozoa, but no zDHHC palmitoyl transferase has been identified in Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. In this study we identify and show the subcellular localization of TcHIP (Tc00.1047053508199.50), a putative T. cruzi zDHHC palmitoyl transferase. Analysis of the deduced protein sequence indicates that it contains ankyrin repeats (Ank and Ank2) and the zDHHC conserved domain, typical of zDHHC palmitoyl transferases. A TcHIP polyclonal antiserum obtained from mice immunized with the purified recombinant protein was used to study the presence and subcellular localization of the native enzyme. In western blots this antiserum recognized a protein of about 95 kDa, consistent with the predicted molecular mass of TcHIP (95.4 kDa), in whole extracts of T. cruzi epimastigotes, metacyclic trypomastigotes and intracellular amastigotes. Immunolocalization by confocal microscopy showed TcHIP labeling at the Golgi complex, co-localizing with the T. cruzi Golgi marker TcRab7-GFP. Transfectant T. cruzi epimastigotes containing a construct encoding TcHIP fused to proteins A and C (TcHIP/AC) were obtained. In western blotting experiments, the TcHIP polyclonal antiserum recognized both native and TcHIP/AC proteins in extracts of the transfectants. Confocal microscopy showed co-localization of native TcHIP with TcHIP/AC. These findings demonstrate the presence of a putative zDHHC palmitoyl transferase (TcHIP) containing ankyrin and zDHHC domains in different developmental forms of T. cruzi, and its association with the Golgi complex.
BackgroundClathrin-mediated vesicular trafficking, the mechanism by which proteins and lipids are transported between membrane-bound organelles, accounts for a large proportion of import from the plasma membrane (endocytosis) and transport from the trans-Golgi network towards the endosomal system. Clathrin-mediated events are still poorly understood in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In this study, clathrin heavy (TcCHC) and light (TcCLC) chain gene expression and protein localization were investigated in different developmental forms of T. cruzi (epimastigotes, trypomastigotes and amastigotes), using both polyclonal and monoclonal antibodies raised against T. cruzi recombinant proteins.ResultsAnalysis by confocal microscopy revealed an accumulation of TcCHC and TcCLC at the cell anterior, where the flagellar pocket and Golgi complex are located. TcCLC partially colocalized with the Golgi marker TcRAB7-GFP and with ingested albumin, but did not colocalize with transferrin, a protein mostly ingested via uncoated vesicles at the cytostome/cytopharynx complex.ConclusionClathrin heavy and light chains are expressed in T. cruzi. Both proteins typically localize anterior to the kinetoplast, at the flagellar pocket and Golgi complex region. Our data also indicate that in T. cruzi epimastigotes clathrin-mediated endocytosis of albumin occurs at the flagellar pocket, while clathrin-independent endocytosis of transferrin occurs at the cytostome/cytopharynx complex.
The AP-1 Adaptor Complex assists clathrin-coated vesicle assembly in the trans-Golgi network (TGN) of eukaryotic cells. However, the role of AP-1 in the protozoan Trypanosoma cruzi—the Chagas disease parasite—has not been addressed. Here, we studied the function and localization of AP-1 in different T. cruzi life cycle forms, by generating a gene knockout of the large AP-1 subunit gamma adaptin (TcAP1-γ), and raising a monoclonal antibody against TcAP1-γ. Co-localization with a Golgi marker and with the clathrin light chain showed that TcAP1-γ is located in the Golgi, and it may interact with clathrin in vivo, at the TGN. Epimastigote (insect form) parasites lacking TcAP1-γ (TcγKO) have reduced proliferation and differentiation into infective metacyclic trypomastigotes (compared with wild-type parasites). TcγKO parasites have also displayed significantly reduced infectivity towards mammalian cells. Importantly, TcAP1-γ knockout impaired maturation and transport to lysosome-related organelles (reservosomes) of a key cargo—the major cysteine protease cruzipain, which is important for parasite nutrition, differentiation and infection. In conclusion, the defective processing and transport of cruzipain upon AP-1 ablation may underlie the phenotype of TcγKO parasites.
Reservosomes are large round vesicles located at the posterior end of epimastigote forms of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. They are the specific end organelles of the endocytosis pathway of T. cruzi, and they play key roles in nutrient uptake and cell differentiation. These lysosome-like organelles accumulate ingested macromolecules and contain large amounts of a major cysteine proteinase (cruzipain or GP57/51 protein). Aim of this study was to produce a monoclonal antibody (mAb) against a recombinant T. cruzi cruzipain (TcCruzipain) that specifically labels the reservosomes. BALB/c mice were immunized with purified recombinant TcCruzipain to obtain the mAb. After fusion of isolated splenocytes with myeloma cells and screening, a mAb was obtained by limiting dilution and characterized by capture ELISA. We report here the production of a kappa-positive monoclonal IgG antibody (mAb CZP-315.D9) that recognizes recombinant TcCruzipain. This mAb binds preferentially to a protein with a molecular weight of about 50 kDa on western blots and specifically labels reservosomes by immunofluorescence and transmission electron microscopy. The monoclonal CZP-315.D9 constitutes a potentially powerful marker for use in studies on the function of reservosomes of T. cruzi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.