FERONIA (FER), a receptor-like kinase involved in plant immunity, cell expansion, and mechanical signal transduction, is known to be endocytosed and degraded in response to treatment with its peptide ligand RAPID ALKALINIZATION FACTOR 1 (RALF1). Using confocal fluorescence microscopy and biochemical assays, we have found that full length FER-eGFP abundance at the plasma membrane is also regulated by mechanical stimulation, but through a separate, cysteine protease-dependent pathway. Like RALF1 treatment, both mechanical bending and mechanical wounding trigger a reduction in plasma membrane-localized, native promoter-driven FER-eGFP in Arabidopsis roots, hypocotyls, and cotyledons. However, pharmacological inhibition of protein trafficking and degradation suggests that while RALF1 induces clathrin-mediated endocytosis and subsequent degradation of FER-eGFP, mechanical stimulation triggers cleavage and/or degradation of FER-eGFP in a cysteine protease-dependent, clathrin-independent manner. Despite the stimulus-dependent differences in these two pathways, we found that both require early FER signaling components, including Ca2+ signaling, FER kinase activity, and the presence of LLG1, a FER-interacting protein with an essential role in FER-dependent signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.