BackgroundThe SOD1 G93A mouse model of amyotrophic lateral sclerosis (ALS) is the most frequently used model to examine ALS pathophysiology. There is a lack of homogeneity in usage of the SOD1 G93A mouse, including differences in genetic background and gender, which could confound the field’s results.ObjectiveIn an analysis of 97 studies, we characterized the ALS progression for the high transgene copy control SOD1 G93A mouse on the basis of disease onset, overall lifespan, and disease duration for male and female mice on the B6SJL and C57BL/6J genetic backgrounds and quantified magnitudes of differences between groups.MethodsMean age at onset, onset assessment measure, disease duration, and overall lifespan data from each study were extracted and statistically modeled as the response of linear regression with the sex and genetic background factored as predictors. Additional examination was performed on differing experimental onset and endpoint assessment measures.ResultsC57BL/6 background mice show delayed onset of symptoms, increased lifespan, and an extended disease duration compared to their sex-matched B6SJL counterparts. Female B6SJL generally experience extended lifespan and delayed onset compared to their male counterparts, while female mice on the C57BL/6 background show delayed onset but no difference in survival compared to their male counterparts. Finally, different experimental protocols (tremor, rotarod, etc.) for onset determination result in notably different onset means.ConclusionsOverall, the observed effect of sex on disease endpoints was smaller than that which can be attributed to the genetic background. The often-reported increase in lifespan for female mice was observed only for mice on the B6SJL background, implicating a strain-dependent effect of sex on disease progression that manifests despite identical mutant SOD1 expression.
We perform a large-scale meta-analysis of 51 peer-reviewed 3xTg-AD mouse publications to compare Alzheimer’s disease (AD) quantitative clinical outcome measures, including amyloid-β (Aβ), total tau, and phosphorylated tau (pTau), with cognitive performance in Morris water maze (MWM) and Novel Object Recognition (NOR). “High” levels of Aβ (Aβ40, Aβ42) showed significant but weak trends with cognitive decline (MWM: slope = 0.336, R2 = 0.149, n = 259, p < 0.001; NOR: slope = 0.156, R2 = 0.064, n = 116, p < 0.05); only soluble Aβ or directly measured Aβ meaningfully contribute. Tau expression in 3xTg-AD mice was within 10–20% of wild type and not associated with cognitive decline. In contrast, increased pTau is directly and significantly correlated with cognitive decline in MWM (slope = 0.408, R2 = 0.275, n = 371, p < < 0.01) and NOR (slope = 0.319, R2 = 0.176, n = 113, p < 0.05). While a variety of pTau epitopes (AT8, AT270, AT180, PHF-1) were examined, AT8 correlated most strongly with cognition (slope = 0.586, R2 = 0.521, n = 185, p < < 0.001). Multiple linear regression confirmed pTau is a stronger predictor of MWM performance than Aβ. Despite pTau’s lower physical concentration than Aβ, pTau levels more directly and quantitatively correlate with 3xTg-AD cognitive decline. pTau’s contribution to neurofibrillary tangles well after Aβ levels plateau makes pTau a viable treatment target even in late-stage clinical AD. Principal component analysis, which included hyperphosphorylation induced by kinases (pGSK3β, GSK3β, CDK5), identified phosphorylated ser9 GSK3β as the primary contributor to MWM variance. In summary, meta-analysis of cognitive decline in preclinical AD finds tauopathy more impactful than Aβ. Nonetheless, complex AD interactions dictate successful therapeutics harness synergy between Aβ and pTau, possibly through the GSK3 pathway.
Amyloid-β (Aβ) is believed to directly affect memory and learning in Alzheimer’s disease (AD). It is widely suggested that there is a relationship between Aβ40 and Aβ42 levels and cognitive performance. In order to explore the validity of this relationship, we performed a meta-analysis of 40 peer-reviewed, published AD transgenic mouse studies that quantitatively measured Aβ levels in brain tissue after assessing cognitive performance. We examined the relationship between Aβ levels (Aβ40, Aβ42, or the ratio of Aβ42 to Aβ40) and cognitive function as measured by escape latency times in the Morris water maze or exploratory preference percentage in the novel object recognition test. Our systematic review examined five mouse models (Tg2576, APP, PS1, 3xTg, APP(OSK)-Tg), gender, and age. The overall result revealed no statistically significant correlation between quantified Aβ levels and experimental measures of cognitive function. However, enough of the trends were of the same sign to suggest that there probably is a very weak qualitative trend visible only across many orders of magnitude. In summary, the results of the systematic review revealed that mice bred to show elevated levels of Aβ do not perform significantly worse in cognitive tests than mice that do not have elevated Aβ levels. Our results suggest two lines of inquiry: 1) Aβ is a biochemical “side effect” of the AD pathology; or 2) learning and memory deficits in AD are tied to the presence of qualitatively “high” levels of Aβ but are not quantitatively sensitive to the levels themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.