Blockchain revolutionized the transfer of assets in the 21st century and enabled the creation and wide adoption of cryptocurrencies. Despite the great success of cryptocurrencies, consensus protocols' low performance makes their adoption as a daily payment method infeasible. Other factors that inhibit the advancement of cryptocurrencies as an alternative payment method are the high confirmation latency and the high value of fees. Thus, the Payment Channel Network (PCN) technology presents a fast and secure solution to the blockchain scalability problem. Payment channel networks introduce a new way of transacting, displaying high transaction throughput by minimizing the number of transactions recorded at the blockchain. This chapter addresses the payment channel networks technology to provide an efficient and agile cryptocurrencies transfer. We present a hands-on activity that uses PCNsim, a modular simulator of payment channel networks developed by GTA (Grupo de Teleinformática e Automação). The goal of this chapter is to demonstrate the key concepts of payment channel networks and associate these concepts with research challenges in computer networks and information security. It is expected that, by the end of the chapter, the readers will master the fundamentals of payment channel networks and develop skills to identify their advantages and disadvantages critically. Moreover, readers are expected to understand the challenges related to privacy and routing and be on the cutting-edge of the technology to foster high-level research in the area.
Ataques cibernéticos têm se tornado cada vez mais comuns e causam grandes danos a pessoas e organizações. A detecção tardia desses ataques aumenta a possibilidade de ocorrerem danos irreparáveis, com altas perdas financeiras sendo uma ocorrência comum. Este artigo propõe TeMIA-NT: Monitoramento e Análise Inteligente de Ameaças de Tráfego de Rede, uma ferramenta para análise de tráfego em tempo real usando processamento paralelo de fluxos em um aglomerado. As principais contribuições da ferramenta TeMIA-NT são: i) a proposta de uma arquitetura modular para detecção em tempo real de intrusões de rede que suporta alta taxas de tráfego, ii) o uso da biblioteca structured streaming do Apache Spark e iii) dois modos de operação: em linha (online) e em tempo diferenciado (offline). O modo de operação em tempo diferenciado permite avaliar o desempenho de múltiplos algoritmos de aprendizado de máquina sobre um determinado conjunto de dados incluindo métricas como acurácia, F1-score e área sob a curva ROC. No modo em linha a ferramenta usa estruturas de dataframe e a biblioteca structured streaming no modo contínuo, o que permite a detecção de ameaças em tempo real e a rápida reação a ataques. De modo a minimizar os danos causados, TeMIA-NT atinge taxas de processamento de fluxo que chegam a 50 GB/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.