The biodiversity of macrobenthic invertebrates of two artificial hard substrates close to a mariculture plant was assessed in order to understand the effect on the fouling community of an innovative Integrated Multi-Trophic Aquaculture (IMTA) system. The examined hard substrates were (i) vertical bare collectors that are placed around the cages as new colonizable substrates, which were investigated from the early colonization and (ii) artificial hard substrates already present under the cages analyzed over time to observe changes due to the action on the water column by filter feeder organisms colonizing the above vertical collectors. Overall, 186 taxa were collected (both the substrates), of which 99 as sessile habitat-former or structuring macroinvertebrates and 87 as associated fauna, mostly vagile forms. On the vertical collectors 121 taxa were collected, among which 44 sessile structuring species and 77 vagile-associated taxa; on the artificial hard substrates under the cages, 124 taxa were identified, 95 belong to the first category and 29 as associated taxa. The two analyzed substrates shared 43% of sessile species (40) and 22% of associated species (19). At the end of the first year of experimentation, the study revealed Sabella spallanzanii and mussels as the most abundant taxa. Lastly, the communities under the cages showed an increase in biodiversity after the placement of collectors. The changes were attributed to the decrease in particulate matter originating as wastes from the breeding cage, which was intercepted by the filter feeder community developed on the vertical collectors.
Background The demosponge Hymeniacidon perlevis is characterized by wide geographic distribution and great adaptability to numerous and highly variable climatic and hydrological conditions. Indeed, the species can colonize many different environments, including several unusual ones, such as concrete drainage conduits of a marine land-based fish farm plant. This research aimed to enhance existing knowledge on the reproductive cycle and growth performance of H. perlevis while also evaluating the impact of a controlled supply of trophic resources, wastewater flow and constant water temperature on these biological traits. Methods Specimens included in this one-year study inhabited drainage conduits of a land-based fish farm. The approach included measurements of sponge biomass and occurrence and abundance of reproductive elements across different seasons and environmental parameters, such as fish biomass, trophic resources, and wastewater flow. Sponge growth and reproductive elements, including oocytes, spermatic cysts, and embryos, were measured monthly in sponges positioned in the drainage conduit, thus with different trophic resources but with constant water temperature. Finally, we used generalized additive models to describe variables that contribute the most to the growth of sponges. Results Growth performance showed marked variations during the study period. The highest increase in sponge volume was observed from August/September to January/March. The volume of sponges was principally determined by the reduction of reared fish biomass and the increase of pellet amount and wastewater flow. Sponge specimens exhibited an active state during the entire study, as proven by the occurrence of recruits. However, sexual elements were only sporadically observed, thus not permitting the recognition of a true sexual cycle. Discussion The results of the present study confirmed that H. perlevis exhibits high flexibility and adaptability to the differential, and somewhat extreme, environmental conditions. Indeed, this species can live, grow and reproduce in the drainage conduits of the fish farm, where the species face constant darkness, water temperature and continuous nutritional supply. In such conditions, H. perlevis display an active state during the entire year, while avoiding stages of decline and long dormancy usually observed in wild populations. It seems plausible that stable environmental conditions induce an almost continuous sexual phase, probably under the control of endogenous factors. No asexual elements were detected, although it was impossible to exclude the contribution of asexual reproduction in the origin of the newly settled sponges, which were repeatedly detected throughout the study. The growth performance seemed linked to the fish farm conditions, thus providing useful indications on the best maintenance conditions for H. perlevis in land-based integrated multitrophic systems, where the species could be used for wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.