2014 Nous avons calculé la réponse en fréquence en courant alternatif pour un réseau du type Sierpinski dans lequel les liens sont soit des résistances R (ou des impédances Zh) et où tous les n0153uds sont reliés à la terre par l'intermédiaire de capacités C identiques (ou d'impédances Zv). Pour toutes les fréquences plus petites que 1/RC, l'admittance complexe résultante entre chacun des n0153uds « principaux » et la terre peut être exprimée avec précision au moyen d'une fonction d'échelle avec effet de taille finie, tous les exposants de cette fonction étant des combinaisons des dimensions fractale df et spectrale ds du tamis de Sierpinski. La dépendance en fréquence de la fonction de réponse présente une très forte ressemblance avec celle d'un mélange aléatoire de particules conductrices et isolantes. Abstract. 2014 We calculate the a.c. frequency response of Sierpinski-gasket networks, in which the bonds consist of resistors R (or of impedances Zh) and all nodes are connected to the circuit ground by identical capacitors C (or by impedances Zv). The resulting complex, size-dependent admittance between any of the « principal » nodes and the circuit ground can be accurately described at all frequencies less than 1/RC by a finite-size scaling function whose exponents are combinations of the fractal dimension df and the spectral or « fracton » dimension ds of the Sierpinski gasket. The response function also bears a striking similarity to experimental observations of the a.c. response of a random mixture of conducting and insulating particles.
An extensive study of a large, compact, disordered ensemble of plastic spheres of constant diameter, a fraction p of which has been metallically coated is reported. An initial discussion deals with the compactness and average connectivity z of the system. The electrical conductance for completely conducting samples (p=1) has been studied as a function of pressure applied uniaxially to the ends of a cylindrical container, and compared to that of individual contacts in test samples. Although the variation of conductivity with p is consistent with expectations for a site percolation problem, the idea of a simultaneous bond percolation must be introduced to take into account variations in the quality of the different contacts.
When we apply finite-size-scaling analysis to Monte-Carlo calculations of the electrical conductivity of simple-cubic, bond- and site-percolation lattices, we obtain a correlation-length critical exponent in good agreement with current values but, for the conductivity exponent, we find t = 2.06 ± 0.16, significantly higher than the value currently cited. This new value appears, however, in essential agreement with a recently proposed theoretical conjecture
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.