The current research study is concerned with the automated differentiation between histopathological slides from colon tissues with respect to four classes (healthy tissue and cancerous of grades 1, 2 or 3) through an optimized ensemble of predictors. Six distinct classifiers with prediction accuracies ranging from 87% to 95% are considered for the task. The proposed method of combining them takes into account the probabilities of the individual classifiers for each sample to be assigned to any of the four classes, optimizes weights for each technique by differential evolution and attains an accuracy that is significantly better than the individual results. Moreover, a degree of confidence is defined that would allow the pathologists to separate the data into two distinct sets, one that is correctly classified with a high level of confidence and the rest that would need their further attention. The tandem is also validated on other benchmark data sets. The proposed methodology proves to be efficient in improving the classification accuracy of each algorithm taken separately and performs reasonably well on other data sets, even with default weights. In addition, by establishing a degree of confidence the method becomes more viable for use by actual practitioners.
Stock price prediction is a popular yet challenging task and deep learning provides the means to conduct the mining for the different patterns that trigger its dynamic movement. In this paper, the task is to predict the close price for 25 companies enlisted at the Bucharest Stock Exchange, from a novel data set introduced herein. Towards this scope, two traditional deep learning architectures are designed in comparison: a long short-memory network and a temporal convolutional neural model. Based on their predictions, a trading strategy, whose decision to buy or sell depends on two different thresholds, is proposed. A hill climbing approach selects the optimal values for these parameters. The prediction of the two deep learning representatives used in the subsequent trading strategy leads to distinct facets of gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.