Time is a fundamental dimension of life. It is crucial for decisions about quantity, speed of movement and rate of return, as well as for motor control in walking, speech, playing or appreciating music, and participating in sports. Traditionally, the way in which time is perceived, represented and estimated has been explained using a pacemaker-accumulator model that is not only straightforward, but also surprisingly powerful in explaining behavioural and biological data. However, recent advances have challenged this traditional view. It is now proposed that the brain represents time in a distributed manner and tells the time by detecting the coincidental activation of different neural populations.
Individuals time as if using a stopwatch that can be stopped or reset on command. Here, we review behavioural and neurobiological data supporting the time-sharing hypothesis that perceived time depends on the attentional and memory resources allocated to the timing process. Neuroimaging studies in humans suggest that timekeeping tasks engage brain circuits typically involved in attention and working memory. Behavioural, pharmacological, lesion and electrophysiological studies in lower animals support this time-sharing hypothesis. When subjects attend to a second task, or when intruder events are presented, estimated durations are shorter, presumably due to resources being taken away from timing. Here, we extend the time-sharing hypothesis by proposing that resource reallocation is proportional to the perceived contrast, both in temporal and non-temporal features, between intruders and the timed events. New findings support this extension by showing that the effect of an intruder event is dependent on the relative duration of the intruder to the intertrial interval. The conclusion is that the brain circuits engaged by timekeeping comprise not only those primarily involved in time accumulation, but also those involved in the maintenance of attentional and memory resources for timing, and in the monitoring and reallocation of those resources among tasks.
Humans and animals process temporal information as if they were using an internal stopwatch that can be stopped and reset, and whose speed is adjustable. Previous data suggest that dopaminergic drugs affect the speed of this internal stopwatch. Using a paradigm in which rats have to filter out the gaps that (sometimes) interrupted timing, the authors found that methamphetamine and haloperidol also affect the stop and reset mechanism of the internal clock, possibly by modulating attentional components that are dependent on the content and salience of the timed events. This is the first report of both clock and attentional effects of dopaminergic drugs on interval timing in the same experimental setting.
Contrary to data showing sensitivity to nontemporal properties of timed signals, current theories of interval timing assume that animals can use the presence or absence of a signal as equally valid cues as long as duration is the most predictive feature. Consequently, the authors examined rats' behavior when timing the absence of a visual or auditory stimulus in trace conditioning and in a "reversed" gap procedure. Memory for timing was tested by presenting the stimulus as a reversed gap into its timed absence. Results suggest that in trace conditioning (Experiment 1), rats time for the absence of a stimulus by using its offset as a time marker. As in the standard gap procedure, the insertion of a reversed gap was expected to "stop" rats' internal clock. In contrast, a reversed gap of 1-, 5-, or 15-s duration "reset" the timing process in both trace conditioning (Experiment 2) and the reversed gap procedure (Experiment 3). A direct comparison of the standard and reversed gap procedures (Experiment 4) supported these findings. Results suggest that attentional mechanisms involving the salience or content of the gap might contribute to the response rule adopted in a gap procedure.
In most species, the capability of perceiving and using the passage of time in the seconds-to-minutes range (interval timing) is not only accurate but also scalar: errors in time estimation are linearly related to the estimated duration. The ubiquity of scalar timing extends over behavioral, lesion, and pharmacological manipulations. For example, in mammals, dopaminergic drugs induce an immediate, scalar change in the perceived time (clock pattern), whereas cholinergic drugs induce a gradual, scalar change in perceived time (memory pattern). How do these properties emerge from unreliable, noisy neurons firing in the milliseconds range? Neurobiological information relative to the brain circuits involved in interval timing provide support for an striatal beat frequency (SBF) model, in which time is coded by the coincidental activation of striatal spiny neurons by cortical neural oscillators. While biologically plausible, the impracticality of perfect oscillators, or their lack thereof, questions this mechanism in a brain with noisy neurons. We explored the computational mechanisms required for the clock and memory patterns in an SBF model with biophysically realistic and noisy Morris–Lecar neurons (SBF–ML). Under the assumption that dopaminergic drugs modulate the firing frequency of cortical oscillators, and that cholinergic drugs modulate the memory representation of the criterion time, we show that our SBF–ML model can reproduce the pharmacological clock and memory patterns observed in the literature. Numerical results also indicate that parameter variability (noise) – which is ubiquitous in the form of small fluctuations in the intrinsic frequencies of neural oscillators within and between trials, and in the errors in recording/retrieving stored information related to criterion time – seems to be critical for the time-scale invariance of the clock and memory patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.