SummaryTaking into consideration the biological activity of the only natural products containing a 1,2,4-oxadiazole ring in their structure (quisqualic acid and phidianidines A and B), the natural product analogs 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)pyrrolidine-2,5-dione (4) and 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)-1H-pyrrole-2,5-dione (7) were synthesized starting from 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1) in two steps by isolating the intermediates 4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobutanoic acid (3) and (Z)-4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobut-2-enoic acid (6). The two natural product analogs 4 and 7 were then tested for antitumor activity toward a panel of 11 cell lines in vitro by using a monolayer cell-survival and proliferation assay. Compound 7 was the most potent and exhibited a mean IC50 value of approximately 9.4 µM. Aniline 1 was synthesized by two routes in one-pot reactions starting from tert-butylamidoxime and 4-aminobenzoic acid or 4-nitrobenzonitrile. The structures of compounds 1, 2, 4, 5 and 6 were confirmed by X-ray crystallography.
This work presents the synthesis, characterization, and application of several new metal(I) complexes with trifluoromethylpyridine-containing N-heterocyclic carbene (NHC) ligands. The metal of choice was gold(I) for compounds 7 -10, rhodium(I) for 11 -12, and iridium(I) for 13 -14, respectively. The trifluoromethylpyridine moiety was incorporated, along with other biologically active moieties, with the intention of modifying the lipophilicity of the complexes, so that the transport of the active units (M-NHC) through the cell wall barrier is facilitated. The biological activity of the complexes was investigated. In vitro assessment of antitumor activity in a panel of 12 human tumor cell lines by a monolayer assay revealed good potency (mean IC 50 12.6 lM) and tumor selectivity for one compound. The solid-state structures of two solvates of compound 7, one with MeOH and one with THF, were determined by X-ray diffraction analysis.
New chiral derivatives of 1 5 ,3 5 ,5 5 ,7 5 -tetra-tert-butyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane-1 2 ,3 2 ,5 2 ,7 2 -tetraol [(1); tert-butyl-calix[4]-arene] were synthesized by coupling modified chiral quinuclidines derived from the natural-product-based alkaloids quincorine and quincoridine with the calix[4]arene 1 via either an ester bond or an amide bond. X-ray analyses of two products were performed. Applications of the products in asymmetric catalytic hydrogen transfer reactions are described. A protocol is presented to multi-substitute calix [4] arene at the methylene bridges, resulting in, e.g., 2,6-carboxyl-all-tert-butyl all-methoxy-calix[4]arene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.