Yeast biomass is considered a low-cost material that can be successfully used for the biosorption of metal ions from aqueous solution, due to its structural characteristics. This study evaluates the biosorptive performance of Saccharomyces cerevisiae in the biosorption of Co(II), Zn(II) and Cu(II) ions from aqueous media in batch mono-component systems. The influence of solution pH, biosorbent dose, contact time, temperature and initial metal ions concentration was examined step by step, to obtain the optimal conditions for biosorption experiments. Maximum uptake efficiency for all metal ions on this biosorbent was obtained at: pH = 5.0, 4.0 g biosorbent/L, room temperature of 23 °C, and a contact time of 60 min, and these were considered optimal. The equilibrium results were analyzed using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models, while for the modeling of the kinetics data, three models (pseudo-first order, pseudo-second order and intra-particle diffusion) were used. Dubinin–Radushkevich isotherm model and the pseudo-second order model showed the best fit with the experimental data obtained at biosorption of Co(II), Zn(II) and Cu(II) ions on Saccharomyces cerevisiae. Both maximum biosorption capacities and pseudo-second rate constants follow the order: Co(II) > Zn(II) > Cu(II), suggesting that the structural particularities of metal ions are important in the biosorption processes. Based on the obtained equilibrium and kinetic parameters, the biosorption mechanism is analyzed and the possible applications are emphasized.
The occurrence of aroma constituents in sparkling wines, with direct impact on their organoleptic characteristics, is affected by several factors, for example the base-wine particularities, grapes cultivar conditions, inoculated yeasts, the aging stage, and wine-making practices. This study evaluated the influence of different four commercial yeasts (IOC FIZZ™, IOC DIVINE™, LEVULIA CRISTAL™, and IOC 18-2007™) on the volatile composition of experimental sparkling wines. For this, five sparkling wines variants from the Muscat Ottonel grape variety were obtained. The base-wine was obtained through reverse osmosis and had a predetermined alcoholic concentration (10.5% vol.). In order to fulfill the proposed purpose, the experimental sparkling wines were characterized by the physical–chemical parameters (according to International Organization of Vine and Wine methods of analysis), volatile fraction (using gas-chromatography coupled with mass spectrometry technique), and sensory descriptors. Data showed a key impact on the concentration of the volatile constituents (p < 0.05), depending on the type of inoculated yeast for the second fermentation. Regarding the sensory analysis, important differences can be observed due to the type of inoculated yeast. Only a minor influence on the physical–chemical parameters was registered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.