Since 2015, the Global Earthquake Model (GEM) Foundation and its partners have been supporting regional programs and bilateral collaborations to develop an open global earthquake risk model. These efforts led to the development of a repository of probabilistic seismic hazard models, a global exposure dataset comprising structural and occupancy information regarding the residential, commercial and industrial buildings, and a comprehensive set of fragility and vulnerability functions for the most common building classes. These components were used to estimate probabilistic earthquake risk globally using the OpenQuake-engine, an open-source software for seismic hazard and risk analysis. This model allows estimating a number of risk metrics such as annualized average losses or aggregated losses for particular return periods, which are fundamental to the development and implementation of earthquake risk mitigation measures.
This study presents an open and transparent exposure model for the residential building stock in South America. This model captures the geographical distribution, structural characteristics (including information about construction materials, lateral load resisting system, range of number of stories), average built-up area, replacement cost, expected number of occupants, and number of dwellings and buildings. The methodology utilized to develop this model was based on national population and housing statistics and expert judgment from dozens of local researchers and practitioners. This model has been developed as part of the South America Risk Assessment (SARA) project led by the Global Earthquake Model (GEM), and it can be used to perform earthquake risk analyses. It is available at different geographical scales for seven Andean countries: Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, and Venezuela (DOI: 10.13117/GEM. DATASET.EXP.ANDEAN-v1.0).
There are almost 50 years of research on fragility and vulnerability assessment, both key elements in seismic risk or loss estimation. This paper presents the online database of physical vulnerability models that has been created as part of the Global Earthquake Model (GEM) initiative. The database comprises fragility and vulnerability curves, damage-to-loss models, and capacity curves for various types of structures. The attributes that have been selected to characterize each function, the constraints of setting up a usable database, the challenges in collecting these models, and the current trends in the development of vulnerability models are discussed in this study. The current collection of models leverages upon the outputs of several initiatives, such as GEM's Global Vulnerability Consortium and the European Syner-G project. This database is publicly available through the web-based GEM OpenQuake-platform http://doi
This paper aims at investigating the seismic fragility of confined masonry (CM) structures in Lima, Peru, which can be used to perform earthquake scenarios at urban scale. A database describing the geometric properties (walls density, building area, height) of this type of structure was developed using data from field surveys. This information was complemented with results from experimental tests to compute a large set of capacity curves using a mechanical procedure. These models were tested against a set of ground motion records using the displacement-based earthquake loss assessment (DBELA) procedure, and the structural responses were used to derive fragility functions for four building classes. The resulting fragility curves were convoluted with seismic hazard curves to evaluate the annualized expected loss ratio and annual collapse probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.