FLT3 tyrosine kinase inhibitor (TKI) therapy evolved into a standard therapy in FLT3-mutated AML. TKI resistance, however, develops frequently with poor outcomes. We analyzed acquired TKI resistance in AML cell lines by multilayered proteome analyses. Leupaxin (LPXN), a regulator of cell migration and adhesion, was induced during early resistance development, alongside the tyrosine kinase PTK2B which phosphorylated LPXN. Resistant cells differed in cell adhesion and migration, indicating altered niche interactions. PTK2B and LPXN were highly expressed in leukemic stem cells in FLT3-ITD patients. PTK2B/FAK inhibition abrogated resistance-associated phenotypes, such as enhanced cell migration. Altered pathways in resistant cells, assessed by nascent proteomics, were largely reverted upon PTK2B/FAK inhibition. PTK2B/FAK inhibitors PF-431396 and defactinib synergized with different TKIs or daunorubicin in FLT3-mutated AML. Midostaurin-resistant and AML cells co-cultured with mesenchymal stroma cells responded particularly well to PTK2B/FAK inhibitor addition. Xenograft mouse models showed significant longer time to leukemia symptom-related endpoint upon gilteritinib/defactinib combination treatment in comparison to treatment with either drug alone. Our data suggest that the leupaxin-PTK2B axis plays an important role in acquired TKI resistance in AML. PTK2B/FAK inhibitors act synergistically with currently used therapeutics and may overcome emerging TKI resistance in FLT3-mutated AML at an early timepoint.
The expansion of acute myeloid leukemia (AML) blasts not only suppresses normal hematopoiesis, but also alters the microenvironment. The interplay of different components of the bone marrow gives rise to altered metabolic states and activates signaling pathways which lead to resistance and impede effective therapy. Therefore, the underlying processes and mechanisms represent attractive therapeutic leverage points for overcoming therapy resistance in AML. Here, we briefly discuss resistance mechanisms based on cell interactions and secreted soluble factors in the hematopoietic niche and provide an overview of niche‐related therapeutic targets currently undergoing preclinical and clinical investigation which may help improve the outcome in AML therapy.
Background: Background:Tyrosine kinase inhibitor (TKI) therapy is a well-established therapy approach in FLT3-mutated AML. However, TKI resistance occurs frequently while the underlying mechanisms remain incompletely understood. One concept of chemotherapy-resistance in leukemia is cell adhesion mediated drug resistance (CAM-DR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.