Background: Multiple studies have compared the performance of artificial intelligence (AI)ebased models for automated skin cancer classification to human experts, thus setting the cornerstone for a successful translation of AI-based tools into clinicopathological practice.
Dermoscopy image analysis (DIA) is a growing field, with works being published every week. This makes it difficult not only to keep track of all the contributions, but also for new researchers to identify relevant information and new directions to be explored. Several surveys have been written in the past decade, but these tend to cover all of the steps of a CAD system, which can be overwhelming. Moreover, in these works, each of the steps is briefly discussed due to lack of space. Among the different blocks of the CAD system, the most relevant is the one devoted to feature extraction. This is also the block where existing works exhibit the most variability. Therefore, we believe that it is important to review the state-of-the-art on this matter. This work thoroughly explores the several types of features that have been used in DIA. A discussion on their relevance and limitations, as well as suggestions for future research are provided.
FINDINGS A checklist of items was developed that outlines best practices of image-based AI development and assessment in dermatology.
CONCLUSIONS AND RELEVANCEClinically effective AI needs to be fair, reliable, and safe; this checklist of best practices will help both developers and reviewers achieve this goal.
A pigment network is one of the most important dermoscopic structures. This paper describes an automatic system that performs its detection in dermoscopy images. The proposed system involves a set of sequential steps. First, a preprocessing algorithm is applied to the dermoscopy image. Then, a bank of directional filters and a connected component analysis are used in order to detect the "lines" of the pigment network. Finally, features are extracted from the detected network and used to train an AdaBoost algorithm to classify each lesion regarding the presence of the pigment network. The algorithm was tested on a dataset of 200 medically annotated images from the database of Hospital Pedro Hispano (Matosinhos), achieving a sensitivity = 91.1% and a specificity = 82.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.