This work presents a new artificial neural network (ANN) model formulation for RF high-power transistors which includes the S-parameters of the active device. This improves the small-signal extrapolation capability, and the OFFstate impedance approximation, making it suitable for Doherty power amplifier (DPA) design. This extrapolation capability plays a key role in the correct Doherty load modulation prediction, since, at low power levels, the peaking PA is subjected to active loads that cannot be synthetized with a passive load-pull system, forcing the model to extrapolate. Thus, the proposed model formulation is able to solve the issues that are normally observed when ANN-based models are used in complex PA architectures as the Doherty PA. To validate the proposed behavioral model, a 700-W asymmetrical LDMOS DPA, centered at 1.84 GHz, was simulated and measured. Index Terms-Artificial neural network (ANN), behavioral model, Doherty, load modulation, passive load-pull, power amplifier. I. INTRODUCTION T HE Doherty power amplifier (DPA) is, nowadays, the wireless base-station workhorse in what RF signal amplification is concerned [1]-[4]. Accurate nonlinear models for the state-of-the-art high-power transistors are very difficult to obtain mostly because of the thermal issues and the distributed nature of these devices [5]. Therefore, the conventional Doherty design process is normally based on load-pull and S-parameter measurements. From these measurements, the optimal power load (Z pwr) is determined and the optimal efficiency termination for a particular VSWR, defined on this chosen power load, is selected. This VSWR imposes the back-off Manuscript
This letter presents an automatic power amplifier (PA) design methodology that uses a multi-dimensional search algorithm to find the best compromise between fundamental and harmonic impedance terminations for a specified bandwidth. In conventional design methodologies, PA designers need to preselect the optimum impedances, which normally follow non-Foster trajectories, and are thus impossible to achieve with passive matching networks for a wide frequency range. Instead, the proposed automatic design method directly synthesizes the matching networks to achieve the desired output power, efficiency, and gain performance, without forcing any impedance profiles. For that, load-pull data is interpolated using artificial neural networks, and an algorithm based on the simplified real frequency technique is used to obtain the matching networks. Finally, the method is validated with a single-ended PA implementation.
Reações emocionais negativas e mudanças de autoperceção poderão ser experienciadas por crianças que gaguejam em idade pré-escolar. Estas informações são essenciais à avaliação e à intervenção em terapia da fala. Contudo, apenas existe traduzido para o português europeu (PE) o instrumento Scale of Children’s Atittudes (A-19), de Guitar e Grims (1977). O objetivo deste trabalho passa pela tradução, adaptação e validação do conteúdo do instrumento de avaliação Preschooler Awareness of Stuttering Survey (PASS), de Abbiati et al. (2013), do inglês para o PE. Utilizou-se uma metodologia qualitativa descritiva transversal e os procedimentos empregues foram: tradução, retrotradução e realização de painel de peritos (Sousa & Rojjanasrirat, 2011). Na tradução verificaram-se diferenças entre a versão original e a versão traduzida quanto às equivalências semântica e idiomática de conceitos e expressões (Borsa et al., 2012). Além disso, verificou-se a necessidade de incluir nova informação para promover a compreensão da aplicabilidade do instrumento. Na retrotradução, constatou-se a utilização de sinónimos dos conceitos/expressões da versão original, mantendo-se o mesmo tipo de estrutura frásica. O painel de peritos focou-se na equivalência concetual dos itens das folhas de registo do instrumento. Considerou-se que os conceitos se mantiveram preservados, os itens compreensíveis e a tradução do instrumento adequada à população-alvo pretendida. A continuação desta investigação pretende fornecer aos terapeutas da fala um novo instrumento que auxilie a avaliação de crianças que gaguejam em idade pré-escolar, contribuindo para uma avaliação fidedigna que potencie a intervenção terapêutica de acordo com as características e necessidades de cada criança.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.