BackgroundThe V3 loop of the HIV-1 envelope (Env) glycoprotein gp120 was identified as the “principal neutralizing domain” of HIV-1, but has been considered too variable to serve as a neutralizing antibody (Ab) target. Structural and immunochemical data suggest, however, that V3 contains conserved elements which explain its role in binding to virus co-receptors despite its sequence variability. Despite this evidence of V3 conservation, the ability of anti-V3 Abs to neutralize a significant proportion of HIV-1 isolates from different subtypes (clades) has remained controversial.MethodsHIV-1 neutralization experiments were conducted in two independent laboratories to test human anti-V3 monoclonal Abs (mAbs) against pseudoviruses (psVs) expressing Envs of diverse HIV-1 subtypes from subjects with acute and chronic infections. Neutralization was defined by 50% inhibitory concentrations (IC50), and was statistically assessed based on the area under the neutralization titration curves (AUC).ResultsUsing AUC analyses, statistically significant neutralization was observed by ≥1 anti-V3 mAbs against 56/98 (57%) psVs expressing Envs of diverse subtypes, including subtypes A, AG, B, C and D. Even when the 10 Tier 1 psVs tested were excluded from the analysis, significant neutralization was detected by ≥1 anti-V3 mAbs against 46/88 (52%) psVs from diverse HIV-1 subtypes. Furthermore, 9/24 (37.5%) Tier 2 viruses from the clade B and C standard reference panels were neutralized by ≥1 anti-V3 mAbs. Each anti-V3 mAb tested was able to neutralize 28–42% of the psVs tested. By IC50 criteria, 40/98 (41%) psVs were neutralized by ≥1 anti-V3 mAbs.ConclusionsUsing standard and new statistical methods of data analysis, 6/7 anti-V3 human mAbs displayed cross-clade neutralizing activity and revealed that a significant proportion of viruses can be neutralized by anti-V3 Abs. The new statistical method for analysis of neutralization data provides many advantages to previously used analyses.
Cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1) occurs via a virological synapse (VS), a tight cell-cell junction formed between HIV-infected cells and target cells in which the HIV-1-infected cell polarizes and releases virions toward the noninfected target cell in a gp120-and intercellular adhesion molecule 1 (ICAM-1)-dependent process. The response of the target cell has been less studied. We utilized supported planar bilayers presenting gp120 and ICAM-1 as a reductionist model for the infected-cell membrane and investigated its effect on the target CD4 T cell. This study shows that HIV-1 gp120 interaction with its receptors is initially organized into microclusters that undergo F-actin-dependent consolidation into a central supramolecular activation complex (cSMAC). Src kinases are active in both gp120 microclusters and in the VS cSMAC. The early T-cell receptor (TCR) signaling machinery is partially activated at the VS, and signaling does not propagate to trigger Ca 2؉ elevation or increase CD69 expression. However, these partial TCR signals act locally to create an F-actin-depleted zone. We propose a model in which the F-actin-depleted zone formed within the target CD4 T cell enhances the reception of virions by releasing the physical barrier for HIV-1 entry and facilitating postentry events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.