Agronomic biofortification of staple crops is an effective way to enhance their contents in essential nutrients up the food chain, with a view to correcting for their deficiencies in animal or human status. Selenium (Se) is one such case, for its uneven distribution in the continental crust and, therefore, in agricultural lands easily translates into substantial variation in nutritional intakes. Cereals are far from being the main sources of Se on a content basis, but they are likely the major contributors to intake on a dietary basis. To assess their potential to assimilate and biotransform Se, bread and durum wheat were enriched with Se through foliar and soil addition at an equivalent field rate of 100 g of Se per hectare (ha), using sodium selenate and sodium selenite as Se-supplementation matrices, in actual field conditions throughout. Biotransformation of inorganic Se was evaluated by using HPLC−ICP-MS after enzymatic hydrolysis for Se-species extraction in the resulting mature wheat grains. Selenomethionine and Se VI were identified and quantified: the former was the predominant species, representing 70-100 % of the total Se in samples; the maximum amount of inorganic Se was below 5 %. These results were similar for both supplementation methods and for both wheat varieties. Judging from the present results, one can conclude that agronomic biofortification of wheat may improve the nutritional quality of wheat grains with significant amounts of selenomethionine, which is an attractive option for increasing the Se status in human diets through Se-enriched, wheat-based foodstuff.
The present study aims the identification and quantification of trace elements in two types of honey samples: Orchard honey and Wild honey from mainland Portugal. Chemical elements content was assessed by Instrumental Neutron Activation Analysis (INAA). Concentrations were determinated for Ag, As, Br,
Total particulate matter (TPM) was passively collected inside two classrooms of each of five elementary schools in Lisbon, Portugal. TPM was collected in polycarbonate filters with a 47 mm diameter, placed inside of uncovered plastic petri dishes. The sampling period was from 19 May to 22 June 2009 (35 days exposure) and the collected TPM masses varied between 0.2 mg and 0.8 mg. The major elements were Ca, Fe, Na, K, and Zn at μg level, while others were at ng level. Pearson′s correlation coefficients above 0.75 (a high degree of correlation) were found between several elements. Soil-related, traffic soil re-suspension and anthropogenic emission sources could be identified. Blackboard chalk was also identified through Ca large presence. Some of the determined chemical elements are potential carcinogenic. Quality control of the results showed good agreement as confirmed by the application of u-score test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.