Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.
Despite the increasing life expectancy, an individual’s later years tends to be accompanied by a decrease in the quality of life. Though biological changes that occur through the natural process of aging cannot be controlled, the risk factors associated with lifestyle can. Thus, the main goal of this systematic review was to evaluate how nutrition can modulate aging. For this purpose, thirty-six studies were selected on (i) the efficiency of nutrition’s effect on aging, (ii) the evaluation of biomarkers that promote healthy aging, and (iii) how to increase longevity through nutrition, and their quality was assessed. The results showed that choosing low carbohydrate diets or diets rich in vegetables, fruits, nuts, cereals, fish, and unsaturated fats, containing antioxidants, potassium, and omega-3 decreased cardiovascular diseases and obesity risk, protected the brain from aging, reduced the risk of telomere shortening, and promoted an overall healthier life. With this study, the conclusion is that since the biological processes of aging cannot be controlled, changing one’s nutritional patterns is crucial to prevent the emergence and development of diseases, boost longevity, and, mostly, to enhance one’s quality of life and promote healthy aging.
Prostate cancer (PCa) is one of the most common cancers among men, and its incidence has been rising through the years. Several risk factors have been associated with this disease and unhealthy lifestyles and inflammation were appointed as major contributors for PCa development, progression, and severity. Despite the advantages associated with the currently used diagnostic tools [prostate-specific antigen(PSA) serum levels and digital rectal examination (DRE)], the development of effective approaches for PCa diagnosis is still necessary. Finding lifestyle-associated proteins that may predict the development of PCa seems to be a promising strategy to improve PCa diagnosis. In this context, several biomarkers have been identified, including circulating biomarkers (CRP, insulin, C-peptide, TNFα-R2, adiponectin, IL-6, total PSA, free PSA, and p2PSA), urine biomarkers (PCA3, guanidine, phenylacetylglycine, and glycine), proteins expressed in exosomes (afamin, vitamin D-binding protein, and filamin A), and miRNAs expressed in prostate tissue (miRNA-21, miRNA-101, and miRNA-182). In conclusion, exploring the impact of lifestyle and inflammation on PCa development and progression may open doors to the identification of new biomarkers. The discovery of new PCa diagnostic biomarkers should contribute to reduce overdiagnosis and overtreatment.
Dendritic cell (DC)-based antitumor vaccines have proven to be a safe approach, but often fail to generate robust results between trials. Translation to the clinic has been hindered in part by the lack of standard operation procedures for vaccines production, namely the definition of optimal culture conditions during ex-vivo DC differentiation. Here we sought to compare the ability of three clinical grade serum-free media, DendriMACS, AIM-V, and X-VIVO 15, alongside with fetal bovine serum-supplemented Roswell Park Memorial Institute Medium (RPMI), to support the differentiation of monocyte-derived DCs (Mo-DCs). Under these different culture conditions, phenotype, cell metabolomic profiles, response to maturation stimuli, cytokines production, allogenic T cell stimulatory capacity, as well as priming of antigen-specific CD8+ T cells and activation of autologous natural killer (NK) cells were analyzed. Immature Mo-DCs differentiated in AIM-V or X-VIVO 15 presented lower levels of CD1c, CD1a, and higher expression of CD11c, when compared to cells obtained with DendriMACS. Upon stimulation, only AIM-V or X-VIVO 15 DCs acquired a full mature phenotype, which supports their enhanced capacity to polarize T helper cell type 1 subset, to prime antigen-specific CD8+ T cells and to activate NK cells. CD8+ T cells and NK cells resulting from co-culture with AIM-V or X-VIVO 15 DCs also showed superior cytolytic activity. 1H nuclear magnetic resonance-based metabolomic analysis revealed that superior DC immunostimulatory capacities correlate with an enhanced catabolism of amino acids and glucose. Overall, our data highlight the impact of critically defining the culture medium used in the production of DCs for clinical application in cancer immunotherapy. Moreover, the manipulation of metabolic state during differentiation could be envisaged as a strategy to enhance desired cell characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.