There is an urgent need for antitumor bioactive agents with minimal or no side effects over normal adjacent cells. Fucoidan is a marine-origin polymer with known antitumor activity. However, there are still some concerns about its application due to the inconsistent experimental results, specifically its toxicity over normal cells and the mechanism behind its action. Herein, three fucoidan extracts (FEs) have been tested over normal and breast cancer cell lines. From cytotoxicity results, only one of the extracts shows selective antitumor behavior (at 0.2 mg mL ), despite similarities in sulfation degree and carbohydrates composition. Although the three FEs present different molecular weights, depolymerization of selected samples discarded M as the key factor in the antitumor activity. Significant differences in sulfates position and branching are observed, presenting FE 2 the higher branching degree. Based on all these experimental data, it is believed that these last two properties are the ones that influence the cytotoxic effects of fucoidan extracts.
Atlantic cod is processed industrially for food purposes, with several by-products being directed to animal feed and other ends. Looking particularly into swim bladders, the extraction of collagen can be a valuable strategy for by-product valorization, explored in the present work for the first time. Collagen was extracted using acetic acid (ASCsb) and pepsin (PSCsb) with yields of 5.72% (w/w) and 11.14% (w/w), respectively. SDS-PAGE profile showed that the extracts were compatible with type I collagen. FTIR, CD and XRD results suggest that the PSCsb structure underwent partial denaturation, with microDSC showing a band at 54 C probably corresponding to a melting process, while ASCsb structure remained intact, with preserved triple helix and a denaturation temperature of 29.6 C. Amino acid composition indicates that the total content of proline-like amino acids was 148/1000 residues for ASCsb and 141/1000 residues for PSCsb, with a hydroxylation degree of about 37%. The extracts exhibited a typical shear thinning behavior, interesting property regarding their further processing toward the development of biomaterials. In this regard, assessment of metabolic activity of human fibroblast cells cultured in the presence of collagen extracts with concentrations up to 3 mg/mL revealed the absence of cytotoxic behavior. Collagen extracts obtained from Atlantic cod swim bladders shown attractive properties regarding their use in cosmetic or biomedical applications.
ARTICLE HISTORY
The extraction of collagen from fish skins is being proposed as strategy for valorization of marine origin by-products, being a sustainable alternative to mammal collagen. The method commonly uses solutions of organic acids, but new methodologies are arising, aiming to improve process yields and/or the properties of the resulting products. In this work, skins removed from salt brine Atlantic cod (Gadus morhua) were used to extract collagen, using water acidified with CO 2 , obtaining an extraction yield of 13.8% (w/w). Acidified water extracted collagen (AWC) presented a total content of proline-like amino acids of 151/1000 residues, with a degree of hydroxylation of 38%, and its SDS-PAGE profile is compatible with type I collagen. Moreover, FTIR, CD and XRD results suggest the presence of preserved triple helix, having a denaturation temperature of 32.3°C as determined by micro-DSC. AWC exhibited a typical shear thinning behavior, interesting regarding their further processing, namely in jelly-like formulations. Additionally, the presence of AWC in MRC-5 human fibroblasts culture did not affect cell viability, demonstrating the non-cytotoxic behavior. Overall, the results support the efficiency of the proposed approach for collagen extraction and further enable the design of methodologies to address AWC use in biomedical or cosmetic context.
An engineered biofunctional system comprises endogenous BMP-2 and VEGF bound in a parallel pattern. It successfully enabled obtaining the spatial osteogenic and angiogenic differentiation of human hBM-MSCs under basal culture conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.