Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and
in vitro
studies as well as
in vivo
animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.
Human NK cells can respond rapidly to Plasmodium falciparum-infected RBC (iRBC) to produce IFN-γ. In this study, we have examined the heterogeneity of this response among malaria-naive blood donors. Cells from all donors become partially activated (up-regulating CD69, perforin, and granzyme) upon exposure to iRBC but cells from only a subset of donors become fully activated (additionally up-regulating CD25, IFN-γ, and surface expression of lysosomal-associated membrane protein 1 (LAMP-1)). Although both CD56dim and CD56bright NK cell populations can express IFN-γ in response to iRBC, CD25 and LAMP-1 are up-regulated only by CD56dim NK cells and CD69 is up-regulated to a greater extent in this subset; by contrast, perforin and granzyme A are preferentially up-regulated by CD56bright NK cells. NK cells expressing IFN-γ in response to iRBC always coexpress CD69 and CD25 but rarely LAMP-1, suggesting that individual NK cells respond to iRBC either by IFN-γ production or cytotoxicity. Furthermore, physical contact with iRBC can, in a proportion of donors, lead to NK cell cytoskeletal reorganization suggestive of functional interactions between the cells. These observations imply that individuals may vary in their ability to mount an innate immune response to malaria infection with obvious implications for disease resistance or susceptibility.
Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.