The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.
Fishes, for the most part, do not exhibit heteromorphic sex chromosomes although they belong to gonochoristic species (Denton 1973, Ohno 1974). Most fishes are thought to have polygenic sex determination. Even though most of these genes are located in a given chromosome pair, if this pair is not heteromorphic it can be defined as a sex pair only by genetic crosses with the use of genetic markers (Denton 1973). Although the occurrence of differentiated sex chromosomes in fishes is not a general rule, several such cases have been reported, since the studies of Nogusa (1960) with Mogrunda obscura (Gobiidae). So, XX/XY mechanisms were reported for some species belonging to different genera as of Bathylagus (
Acute lymphoblastic leukemia (ALL) is the most common form of pediatric cancer. Although exposure to environmental agents appears to predispose individuals to this disease, little attention has been paid to the role of genetic susceptibility to environmental exposures in the etiology of childhood ALL. The enzymes GSTM1, GSTT1, GSTP1, CYP1A1, and CYP2E1 are involved in the bioactivation and detoxification of a variety of xenobiotics present in food, organic solvents, tobacco smoke, drugs, alcoholic drinks, pesticides, and environmental pollutants. Polymorphisms in the genes coding for these enzymes have been associated with increased susceptibility to different cancers, including hematologic malignancies. To investigate whether these polymorphisms represent risk-modifying factors for childhood ALL, a study was conducted involving 113 Brazilian patients of childhood ALL and 221 controls with similar ethnic backgrounds. The data revealed that carriers of the rare GSTP1 Val allele were at higher risk of ALL (odds ratio [OR] = 2.7; 95% confidence interval [CI] = 1.1-6.8; P = 0.04). No difference was found in the prevalence of the GSTM1 and GSTT1 null genotypes between ALL patients and the controls, and no association was found between CYP1A1*2 and CYP2E1*3 variants and ALL. However, when the mutant CYP1A1 and CYP2E1 alleles were considered together with the GSTM1 and GSTP1 risk-elevating genotypes, the risk of ALL was increased further (OR = 10.3; 95% CI = 1.0-111.8; P = 0.05), suggesting a combined effect. These results imply that genetic variants of xenobiotic metabolizing genes influence the risk of developing childhood ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.