Estradiol is known to exert a protective effect against the development of atherosclerosis, but the mechanism by which this protection is mediated is unclear. Since animal studies strongly suggest that production of endothelium-derived relaxing factor is enhanced by estradiol, we The incidence of cardiovascular disease, the leading cause of mortality in western societies, is higher in men than in premenopausal women but increases in postmenopausal women. An abundance of epidemiological data supports a role for estrogens in this atheroprotective effect, prompting recommendations for their widespread use in postmenopausal replacement therapy (1, 2). However, the mechanism whereby this protection is mediated remains obscure. It is traditionally thought to be due to potentially favorable changes in blood lipids and lipoproteins (1), but a number of human (3) as well as animal studies strongly suggest a direct effect on the vascular system (4-6) and more specifically that basal endotheliumderived relaxing factor is enhanced in estradiol-treated females compared with oophorectomized controls (7-11).The endothelium-derived relaxing factor has been identified as nitric oxide (NO) or a closely related compound derived from the amino acid L-arginine, able to induce stimulation of the soluble guanylate cyclase enzyme contained in vascular smooth muscle cells (12)(13)(14) Because the molecular mechanisms of the endotheliumderived relaxing factor-enhanced activity observed in estradiol-treated animals has not yet been precisely elucidated, we sought to determine the effects of estradiol on NO production and simultaneously on NOS mRNA, protein, and activity in a well-characterized culture system of endothelial cells. MATERIALS AND METHODSCell Culture and Materials. Bovine aortic endothelial cells (BAEC) were obtained and grown as described (25,26)
Chromatin condensation and DNA cleavage at internucleosomal sites have been recognized early as hallmarks of apoptosis, and it has been suggested that extensive DNA chain scission could directly result in the formation of dense chromatin bodies. Here we have shown that no causal relationship exists between DNA degradation and chromatin condensation in glucocorticoid-induced thymocyte apoptosis. The chromatin rearrangement occurred independent of as well as prior to DNA cleavage and involved a specific conformational change at the nucleosome level. In the early stages of the process, the core particles appeared to be tightly packed face-to-face in smooth 11-nm filaments that progressively folded to generate a closely woven network. The network finally collapsed, producing dense apoptotic bodies. Since trypsin digestion relaxed condensed chromatin and histone H4 underwent appreciable deacetylation in the apoptotic cell, we suggest that changes in the DNA-histone interactions represented a major modulating factor of condensation.Although the term "apoptosis" was originally derived from the Greek to emphasize cytoplasmic and nuclear alterations peculiar to the process of programmed cell death (1), no attempt has been made thus far to search for the molecular events underlying these changes, particularly the collapse of the bulk of chromatin into dense domains. The reasons for this delay in the development of a fundamental approach are manifold. In the first place, the unique condensed appearance of the apoptotic nucleus is closely associated with the cleavage of chromatin at internucleosomal sites (2), a circumstance that supports the hypothesis of a causal relationship between extensive chromatin digestion and condensation (3). This early view has recently been challenged on the basis of more refined determinations of the chain length of the DNA isolated from apoptotic cells (4 -6) but has long distracted from the search for the molecular mechanisms involved in the process of condensation. Moreover, since apoptosis plays a key regulatory role in several physiological and pathological processes, major efforts are currently being directed to the elucidation of the biochemical aspects and to the identification of the genes involved in the activation of the cell death program. The onset of chromatin condensation might direct the orderly turning off of genes required for the execution of metabolic suicide, therefore warranting a detailed structural characterization of apoptotic chromatin and a search for terminal modulating factors.Bearing in mind the spatial distribution of interphase chromatin, the appearance of the apoptotic nucleus immediately suggests the occurrence of a structural change involving extremely large domains, and the question arises whether a specific conformational transition at the nucleosome level might account for such a catastrophic phenomenon. In the first place, is chromatin in apoptosis characterized by a three-dimensional array of nucleosomes different from that prevailing in the interphase 3...
Using differential scanning calorimetry and complementary ultrastructural observations, we have characterized the status of chromatin during the transformation of rat hepatocytes in the resistant hepatocyte model of Solt and Farber (1976. Nature (Lond.). 263:701-703). Differential scanning calorimetry affords a measure of the degree of condensation of chromatin in situ and has therefore been used in this work for the purpose of establishing the nature of the structural changes associated with the emergence of successive cellular populations. Since the resistant hepatocyte model generates a series of synchronous phenotypic changes, it was possible to determine unambiguously the content of heterochromatin at each step of the process. The higher-order structure undergoes a partial relaxation in early developing nodules, isolated 16 weeks after initiation; the thermal transition at 90 degrees C, which is characteristic of noninteracting core particles, increases with respect to control hepatocytes. Dramatic changes occur in persistent (46-week) nodules. The 90 degrees C endotherm dominates the thermogram, while the transition at 107 degrees C, corresponding to the denaturation of the core particle packaged within the heterochromatic domains, disappears. The complete loss of the higher-order structure at this stage of transformation has been further verified by ultrastructural observations on thin nuclear sections. Ten-nm filaments, having a beaded appearance, are scattered throughout the nucleoplasm and clearly result from the decondensation of 30-nm-thick fibers. This catastrophic relaxation process cannot be related to an effective increase in gene activity. Rather, our observations suggest that during transformation chromatin is in a state of high transcriptional competence associated with the alert of general cellular programs. This view is consistent with the finding that in persistent nodules the DNA is extensively hypomethylated with respect to normal liver.
In a series of related papers, we have recently presented the results of a thermodynamic approach to the conformational transitions of bulk chromatin induced in vitro by different structure-perturbing agents, such as the intercalating dye ethidium bromide or the ionic strength. In all these studies, we took advantage of the capability of differential scanning calorimetry to detect the changes in the melting behavior of the structural domains of chromatin (the linker and the core particle) associated with the order-disorder transitions. This technique also revealed that the higher-order structure undergoes a catastrophic decondensation process in the course of the transformation of rat hepatocytes as well as of cultured cells. Therefore, several questions arose concerning the biological function (if any) of the changes in the degree of condensation of bulk chromatin, as well as the mechanism of transition and the nature of the modulating agents. In this paper, we report a thermodynamic analysis of the reconstitution of H1-depleted calf thymus chromatin with the purpose of establishing (1) the binding mode of H1 and (2) the energetics and cooperativity of the transition from the unfolded to the condensed state. When H1 is progressively extracted from calf thymus nuclei by high-salt treatment, the endotherm at 107 degrees C, characteristic of the core particles interacting within condensed domains, converts into the thermal transition at 90 degrees C, resulting from the denaturation of noninteracting core particles. Binding of H1 fully restores the thermal profile of native chromatin. Analysis of H1 association shows that binding occurs at independent sites with KA = (3.67 +/- 0.60) x 10(4) M-1 and each site comprising 180 +/- 10 bp. The experimental dependence of the fraction of condensed chromatin on R, the moles of bound H1 per nucleosome mole, was compared with a simple thermodynamic model for the conformational change. This analysis yields a value of -5 kcal per nucleosome mole for the interaction free energy of nucleosomes within the ordered state. The process of condensation, is not, however, a highly cooperative (all-or-none) one, as expected from a consideration of the solenoidal model for the 30 nm fiber. Rather, nucleation of the helical state involves the face-to-face interaction between consecutive core particles, and the growth is largely determined by the mergence and rearrangement of neighboring clusters of helically arrayed nucleosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.